Skip to main content

Opioid Receptor Coupling to GIRK Channels

In Vitro Studies Using a Xenopus Oocyte Expression System and In Vivo Studies on Weaver Mutant Mice

  • Protocol
Opioid Research

Part of the book series: Methods in Molecular Biology™ ((MIMM,volume 84))

Abstract

Opioid receptors are coupled to a variety of effectors, including G protein-activated inwardly rectifying potassium (GIRK) channels (also known as Kir3), adenylyl cyclases, and voltage-dependent calcium channels (1). GIRK channels have been shown to be involved in opioid-induced analgesia (2). These channels are activated by G protein-coupled receptors (GPCRs) such as opioid, nociceptin/orphanin FQ, M2 muscarinic, α2 adrenergic, and D2 dopaminergic receptors via the βγ subunits of G proteins (Gβγ) (see Fig. 1) (37). Activation of GIRK channels induces membrane hyperpolarization of the neurons via efflux of potassium ions, ultimately reducing neural excitability and heart rate (3,810). GIRK channels are members of a family of inwardly rectifying potassium (IRK) channels which have two transmembrane regions and one pore-forming region (see Fig. 2). The cDNAs for four GIRK channel subunits have been cloned from mammalian tissues (1113). Neuronal GIRK channels in most regions of the central nervous system (CNS) are predominant heteromultimers consisting of GIRK1 and GIRK2 subunits (1416), whereas atrial GIRK channels are heteromultimers consisting of GIRK1 and GIRK4 subunits (17). The GIRK1, GIRK2, and GIRK3 subunits are widely and distinctively expressed in the CNS (14,16,18), suggesting that they are involved in diverse functions of the CNS such as cognition, memory, emotion, and motor coordination. In many neurons, GIRK channels are coexpressed with opioid receptors (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Law, P. Y., Wong, Y. H., and Loh, H. H. (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu. Rev. Pharmacol. Toxicol. 40, 389–430.

    Article  PubMed  CAS  Google Scholar 

  2. Ikeda, K., Kobayashi, T., Kumanishi, T., Yano, R., Sora, I., and Niki, H. (2002) Molecular mechanisms of analgesia induced by opioids and ethanol: is the GIRK channel the key? Neurosci. Res. 44, 121–131.

    Article  PubMed  CAS  Google Scholar 

  3. North, R. A. (1989) Drug receptors and the inhibition of nerve cells. Br. J. Pharmacol. 98, 13–28.

    PubMed  CAS  Google Scholar 

  4. Takao, K., Yoshii, M., Kanda, A., Kokubun, S., and Nukada, T. (1994) A region of the muscarinic-gated atrial K+ channel critical for activation by G protein beta gamma subunits. Neuron 13, 747–755.

    Article  PubMed  CAS  Google Scholar 

  5. Ikeda, K., Kobayashi, K., Kobayashi, T., Ichikawa, T., Kumanishi, T., Kishida, H., et al. (1997) Functional coupling of the nociceptin/orphanin FQ receptor with the G-protein-activated K+ (GIRK) channel. Brain Res Mol. Brain Res. 45, 117–126.

    Article  PubMed  CAS  Google Scholar 

  6. Ikeda, K., Kobayashi, T., Ichikawa, T., Usui, H., Abe, S., and Kumanishi, T. (1996) Comparison of the three mouse G-protein-activated K+ (GIRK) channels and functional couplings of the opioid receptors with the GIRK1 channel. Ann. NY Acad. Sci. 801, 95–109.

    Article  PubMed  CAS  Google Scholar 

  7. Ikeda, K., Kobayashi, T., Ichikawa, T., Usui, H., and Kumanishi, T. (1995) Functional couplings of the d-and the k-opioid receptors with the G-protein-activated K+ channel. Biochem. Biophys. Res. Commun. 208, 302–308.

    Article  PubMed  CAS  Google Scholar 

  8. Brown, A. M. and Birnbaumer, L. (1990) Ionic channels and their regulation by G protein subunits. Annu. Rev. Physiol. 52, 197–213.

    Article  PubMed  CAS  Google Scholar 

  9. Signorini, S., Liao, Y. J., Duncan, S. A., Jan, L. Y., and Stoffel, M. (1997) Normal cerebellar development but susceptibility to seizures in mice lacking G proteincoupled, inwardly rectifying K+ channel GIRK2. Proc. Natl. Acad. Sci. USA 94, 923–927.

    Article  PubMed  CAS  Google Scholar 

  10. Wickman, K., Nemec, J., Gendler, S. J., and Clapham, D. E. (1998) Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20, 103–114.

    Article  PubMed  CAS  Google Scholar 

  11. Kubo, Y., Reuveny, E., Slesinger, P. A., Jan, Y. N., and Jan, L. Y. (1993) Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364, 802–806.

    Article  PubMed  CAS  Google Scholar 

  12. Doupnik, C. A., Davidson, N., and Lester, H. A. (1995) The inward rectifier potassium channel family. Curr. Opin. Neurobiol. 5, 268–277.

    Article  PubMed  CAS  Google Scholar 

  13. Reimann, F. and Ashcroft, F. M. (1999) Inwardly rectifying potassium channels. Curr. Opin. Cell Biol. 11, 503–508.

    Article  PubMed  CAS  Google Scholar 

  14. Kobayashi, T., Ikeda, K., Ichikawa, T., Abe, S., Togashi, S., and Kumanishi, T. (1995) Molecular cloning of a mouse G-protein-activated K+ channel (mGIRK1) and distinct distributions of three GIRK (GIRK1, 2 and 3) mRNAs in mouse brain. Biochem. Biophys. Res. Commun. 208, 1166–1173.

    Article  PubMed  CAS  Google Scholar 

  15. Lesage, F., Guillemare, E., Fink, M., Duprat, F., Heurteaux, C., Fosset, M., et al. (1995) Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels. J. Biol. Chem. 270, 28,660–28,667.

    Article  PubMed  CAS  Google Scholar 

  16. Liao, Y. J., Jan, Y. N., and Jan, L. Y. (1996) Heteromultimerization of G-proteingated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. J Neurosci 16, 7137–7150.

    PubMed  CAS  Google Scholar 

  17. Krapivinsky, G., Gordon, E. A., Wickman, K., Velimirovic, B., Krapivinsky, L., and Clapham, D. E. (1995) The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 374, 135–141.

    Article  PubMed  CAS  Google Scholar 

  18. Karschin, C., Dissmann, E., Stuhmer, W., and Karschin, A. (1996) IRK(1–3) and GIRK(1–4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci. 16, 3559–3570.

    PubMed  CAS  Google Scholar 

  19. Navarro, B., Kennedy, M. E., Velimirovic, B., Bhat, D., Peterson, A. S., and Clapham, D. E. (1996) Nonselective and Gβγ-insensitive weaver K+ channels. Science 272, 1950–1953.

    Article  PubMed  CAS  Google Scholar 

  20. Amaya, E., Musci, T. J., and Kirschner, M. W. (1991) Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257–270.

    Article  PubMed  CAS  Google Scholar 

  21. Dascal, N. (1987) The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem. 22, 317–387.

    Article  PubMed  CAS  Google Scholar 

  22. Fraser, S. P. and Djamgoz, M. B. A. (1992) Xenopus oocytes: endogenous electrophysiological characteristics, in Current Aspects of the Neurosciences, (Osborne, N. N., ed.), Macmillan Basingstoke, Hampshire, UK, vol. 4, pp. 267–315.

    Google Scholar 

  23. Duprat, F., Lesage, F. Guillemare, E., Fink, M., Hugnot, J. P., Bigay, J., et al. (1995) Heterologous multimeric assembly is essential for K+ channel activity of neuronal and cardiac G-protein-activated inward rectifiers. Biochem. Biophys. Res. Commun. 212, 657–663.

    Article  PubMed  CAS  Google Scholar 

  24. Hedin, K. E., Lim, N. F., and Clapham, D. E. (1996) Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes. Neuron 16, 423–429.

    Article  PubMed  CAS  Google Scholar 

  25. Kobayashi, T., Ikeda, K., Ichikawa, T., Togashi, S., and Kumanishi, T. (1996) Effects of sigma ligands on the cloned μ-, δ-and γ-opioid receptors co-expressed with G-protein-activated K+ (GIRK) channel in Xenopus oocytes. Br. J. Pharmacol. 119, 73–80.

    PubMed  CAS  Google Scholar 

  26. Kobayashi, T., Ikeda, K., and Kumanishi, T. (1998) Effects of clozapine on the δ-and γ-opioid receptors and the G-protein-activated K+ (GIRK) channel expressed in Xenopus oocytes. Br. J. Pharmacol. 123, 421–426.

    Article  PubMed  CAS  Google Scholar 

  27. Coward, P., Wada, H. G., Falk, M. S., Chan, S. D., Meng, F., Akil, H., and Conklin, B. R. (1998) Controlling signaling with a specifically designed Gi-coupled receptor. Proc. Natl. Acad. Sci. USA 95, 352–357.

    Article  PubMed  CAS  Google Scholar 

  28. Yamazaki, M., Mori, H., Araki, K., Mori, K. J., and Mishina, M. (1992) Cloning, expression and modulation of a mouse NMDA receptor subunit. FEBS Lett. 300, 39–45.

    Article  PubMed  CAS  Google Scholar 

  29. Patil, N., Cox, D. R., Bhat, D., Faham, M., Myers, R. M., and Peterson, A. S. (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat. Genet. 11, 126–129.

    Article  PubMed  CAS  Google Scholar 

  30. Ikeda, K., Kobayashi, T., Kumanishi, T., Niki, H., and Yano, R. (2000) Involvement of G-protein-activated inwardly rectifying K+ (GIRK) channels in opioid-induced analgesia. Neurosci. Res. 38, 113–116.

    Article  PubMed  CAS  Google Scholar 

  31. Kobayashi, T., Ikeda, K., Kojima, H., Niki, H., Yano, R., Yoshioka, T., and Kumanishi, T. (1999) Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nat. Neurosci. 2, 1091–1097.

    Article  PubMed  CAS  Google Scholar 

  32. Swick, A. G., Janicot, M., Cheneval-Kastelic, T., McLenithan, J. C., and Lane, M. D. (1992) Promoter-cDNA-directed heterologous protein expression in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA 89, 1812–1816.

    Article  PubMed  CAS  Google Scholar 

  33. Ozaki, M., Hashikawa, T., Ikeda, K., et al. (2002) Degeneration of pontine mossy fibres during cerebellar development in weaver mutant mice. Eur. J. Neurosci. 16, 565–574.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Ikeda, K., Yoshii, M., Sora, I., Kobayashi, T. (2003). Opioid Receptor Coupling to GIRK Channels. In: Pan, Z.Z. (eds) Opioid Research. Methods in Molecular Biology™, vol 84. Humana Press. https://doi.org/10.1385/1-59259-379-8:53

Download citation

  • DOI: https://doi.org/10.1385/1-59259-379-8:53

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-059-5

  • Online ISBN: 978-1-59259-379-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics