Skip to main content

Assessment of Insulin Secretion in the Mouse

  • Protocol
Diabetes Mellitus

Part of the book series: Methods in Molecular Biology™ ((MIMM,volume 83))

Abstract

Insulin is synthesized by the β cells of the pancreatic islets as part of a single 110-amino acid precursor, preproinsulin (see Fig. 1). Processing is initiated by removal of the amino terminal, 24-amino acid signal sequence (1). The resulting 86-amino acid product folds through the formation of three disulfide bridges between Cys7-Cys72, Cys19-Cys85, and Cys71-Cys76 to produce the prohormone, proinsulin. Insulin and C-peptide are produced when endopeptidases, prohormone convertases 2 and 3 (PC2 and PC3, respectively), cleave proinsulin at two paired basic amino acid sites, Lys64-Arg65 and Arg31-Arg32 (see Fig. 1). The basic amino acid pairs are then removed from each site by carboxypeptidase H (3). Proinsulin amino acids 66–86 and 1–30 comprise the A- and B-chains, respectively, of mature insulin (see Fig. 1). “Split” proinsulin 65–66 and 32–33 are produced when cleavage is incomplete and the basic amino acid pairs are not removed from the cleavage site. “Des” proinsulin 64–65 and 31–32 are produced when cleavage is incomplete and the basic amino acid pairs are removed from the cleavage site (4). In the rat, two separate 110-amino acid preproinsulins are transcribed from two nonallelic preproinsulin genes, from which two forms of insulin and C-peptide are subsequently cleaved (1) (see Fig. 1). The mouse synthesizes two molecular forms of insulin and C-peptide, which are identical to their respective rat counterparts (5). The two rodent insulins, designated insulin I and II, are present at a ratio of 1∶3 in the mouse and 4∶1 in the rat (insulin I∶II) (6).

Amino acid sequence of rat preproinsulin I. The superscripts indicate positions where amino acid differences exist in rat preproinsulin II and/or human preproinsulin relative to rat preproinsulin I. Mature rat insulin I and II are identical except that Ser for Pro9 and Met for Lys29 substitutions are incorporated into the B-chain of rat insulin II. Relative to rat insulin I, mature human insulin contains substitutions of Asn, Ser, Thr, and Glu for Lys3, Pro9, Ser30 and Asp69, respectively. (The rat sequence data are from ref. 1; the human data are from ref. 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lomedico, P., Rosenthal, N., Efstratidadis, A., Gilbert, W., Kolodner, R., and Tizard R. (1979) The structure and evolution of the two nonallelic rat preproinsulin genes. Cell 18, 545–558.

    Article  PubMed  CAS  Google Scholar 

  2. Bell, G. I., Swain, W. F., Pictet, R., Cordell, B., Goodman, H. M., and Rutter, W. J. (1979) Nucleotide sequence of a cDNA clone encoding human preproinsulin. Nature 282, 525–527

    Article  PubMed  CAS  Google Scholar 

  3. Clark, P. M. (1999) Assays for insulin, proinsulin(s) and C-peptide. Ann. Clin. Biochem. 36, 541–564.

    PubMed  CAS  Google Scholar 

  4. Gray, I. P., Siddle, K., Frank, B. H., and Hales, C. N. (1987) Characterization and use in immunoradiometric assay of monoclonal antibodies directed against human proinsulin. Diabetes 36, 684–688.

    Article  PubMed  CAS  Google Scholar 

  5. Markussen, J. (1971) Mouse insulins—separation and structures. Int. J. Protein Res. 3, 149–155.

    Article  PubMed  CAS  Google Scholar 

  6. Wentworth, B. M., Rhodes, C., Schnetzler, B., Gross, D. J., Halban, P. A., and Villa-Komaroff, L. (1992) The ratio of mouse insulin I: insulin II does not reflect that of the corresponding preproinsulin mRNAs. Mol. Cell. Endocrinol. 86, 177–186.

    Article  PubMed  CAS  Google Scholar 

  7. Bonnevie-Nielsen, V., Steffes, M. W., and Lernmark, A. (1981) A major loss in islet mass and B-cell function precedes hyperglycemia in mice given multiple low doses of streptozotocin. Diabetes 30, 424–429.

    Article  PubMed  CAS  Google Scholar 

  8. Kano, Y., Kanatsuna, T., Nakamura, N, et al. (1986) Defect of the first-phase insulin secretion to glucose stimulation in the perfused pancreas of the nonobese diabetic (NOD) mouse. Diabetes 35, 486–490.

    Article  PubMed  CAS  Google Scholar 

  9. Brissova, M., Shiota, M., Nicholson, W. E., et al. (2002) Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J. Biol. Chem. 277, 11,225–11,232.

    Article  PubMed  CAS  Google Scholar 

  10. Sapin, R., Ongagna, J.-C, Gasser, F., and Grucker, D. (1998) Insulin measurements in haemolysed serum: influence of insulinase inhibitors. Clini. Chim. Acta 274, 111–117.

    Article  CAS  Google Scholar 

  11. Chevenne, D., Letailleur, A., Trivin, F., and Porquet, D. (1998) Effect of hemolysis on the concentration of insulin in serum determined by RIA and IRMA. Clin. Chem. 44, 354–356.

    PubMed  CAS  Google Scholar 

  12. Yang, C., Coker, K. J., Kim, J. K., et al. (2001) Syntaxin 4 heterozygous knockout mice develop muscle insulin resistance. J. Clin. Invest. 107, 1311–1318.

    Article  PubMed  CAS  Google Scholar 

  13. Roduit, R., Masiello, P., Wang, S. P., Li, H., Mitchell, G. A., and Prentki, M. (2001) A role for hormone-sensitive lipase in glucose-stimulated insulin secretion: a study in hormone-sensitive lipase-deficient mice. Diabetes 50, 1970–1975.

    Article  PubMed  CAS  Google Scholar 

  14. Klaman, L. D., Boss, O., Peroni, O. D, et al. (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol. 20, 5479–5489.

    Article  PubMed  CAS  Google Scholar 

  15. Bruning, J. C., Gautam, D., Burks, D. J., et al. (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125.

    Article  PubMed  CAS  Google Scholar 

  16. Guerra, C., Navarro, P., Valverde, A. M., et al. (2001) Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J. Clin. Invest. 108, 1205–1213.

    PubMed  CAS  Google Scholar 

  17. Mauvais-Jarvis, F., Ueki, K., Fruman, D. A., et al. (2002) Reduced expression of the murine p85{alpha} subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. J. Clin. Invest. 109, 141–149.

    PubMed  CAS  Google Scholar 

  18. Withers, D. J., Burks, D. J., Towery, H. H., Altamuro, S. L., Flint, C. L., and White, M. F (1999) Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nat. Genet. 23, 32–40.

    PubMed  CAS  Google Scholar 

  19. Zisman, A., Peroni, O. D., Abel, E. D., et al. (2000) Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat. Med. 6, 924–928.

    Article  PubMed  CAS  Google Scholar 

  20. Abel, E. D., Peroni, O., Kim, J. K., et al. (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729–733.

    Article  PubMed  CAS  Google Scholar 

  21. Heikkinen, S., Pietila, M., Halmekyto, M., et al. (1999) Hexokinase II-deficient mice. Perental death of homozygotes without disturbances in glucose tolerance in heterozygotes. J. Biol. Chem. 274, 22,517–22,523.

    Article  PubMed  CAS  Google Scholar 

  22. Baggio, L., Adatia, F., Bock, T., Brubaker, P. L., and Drucker, D. J. (2000) Sustained expression of exendin-4 does not perturb glucose homeostasis, beta-cell mass, or food intake in metallothionein-preproexendin transgenic mice. J. Biol. Chem. 275, 34,471–34,477.

    Article  PubMed  CAS  Google Scholar 

  23. Carpenter, M. W., Canick, J. A., Star, J. A., Shellum, C., and Somers, M. (1999) A high-sensitivity assay for amniotic fluid insulin at 14-20 weeks’ gestation. Obstet Gynecol. 94, 778–782.

    Article  PubMed  CAS  Google Scholar 

  24. Shaw, J. A., Delday, M. I., Hart, A. W., Docherty, H. M., Maltin, C. A., and Docherty, K. (2002) Secretion of bioactive human insulin following plasmid-mediated gene transfer to non-neuroendocrine cell lines, primary cultures and rat skeletal muscle in vivo. J. Endocrinol. 172, 653–672.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Brissova, M., Nicholson, W.E., Shiota, M., Powers, A.C. (2003). Assessment of Insulin Secretion in the Mouse. In: Özcan, S. (eds) Diabetes Mellitus. Methods in Molecular Biology™, vol 83. Humana Press. https://doi.org/10.1385/1-59259-377-1:023

Download citation

  • DOI: https://doi.org/10.1385/1-59259-377-1:023

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-148-6

  • Online ISBN: 978-1-59259-377-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics