Skip to main content

Phenotypic and Functional Differences of Dendritic Cells Generated Under Different In Vitro Conditions

  • Protocol
Prostate Cancer Methods and Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 81))

  • 970 Accesses

Abstract

The immune system is capable of recognizing and rejecting autologous tumor cells. This is suggested by reported cases of spontaneous remission of various cancers (1) and the presence of infiltrating leukocytes, the majority of which consist of T cells. However, the very existence of cancer and its inevitable progression without treatment demonstrates the inefficiency of the natural immune defense in combating tumors and the ability of neoplastic cells to evade immune-surveillance. Thus, the major objectives of immunotherapeutic approaches to the treatment of cancer rely on the ability to augment adaptive and natural immune responses against malignant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krikorian, J., Portlock, C., Cooney, D., and Rosenberg, S. (1980) Spontaneous regression of non-Hodgkinā€™s lymphoma. A report of nine cases. Cancer 46, 2093ā€“2099.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Lodge, P. A., Jones, L. A., Bader R. A., Murphy, G. P., and Salgaller, M. L. (2000) Dendritic cell-based immunotherapy of prostate cancer: Immune monitoring of a phase II clinical trial. Cancer Res. 60, 829ā€“833.

    PubMedĀ  CASĀ  Google ScholarĀ 

  3. Zhang, S., Zhang, H. S., Reuter, V. E., Slovin, S. F., Scher, H. I., and Livington, P. O. (1998) Expression of potential target antigens for immunotherapy on primary and metastatic prostate cancers. Clin. Cancer Res. 4, 295ā€“302.

    PubMedĀ  CASĀ  Google ScholarĀ 

  4. Murphy, G., Tjoa, B., Ragde, H., Kenny, G., and Boynton, A. (1996) Phase I clinical trial: T cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. Prostate 29, 371ā€“380.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Tjoa, B. A., Simmons, S. J., Elgamal, A., Rogers, H., Kenny, G. M., Troychak, M. J., et al. (1999) Follow-up evaluation of a Phase II prostate cancer vaccine trial. Prostate 40, 125ā€“129.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Peshwa, M. V., Shi, J. D., Ruegg, C., Laus, R., and Schooten, W. C. (1998) Induction of prostate tumour-specific CD8+ cytotoxic T-lymphocytes in vitro using antigen-presenting cells pulsed with prostate acid phosphatase peptide. Prostate 36, 129ā€“138.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Heiser, A., Dahm, P., Yancey, D. R., Maurice, M. A., Boczkowski, D., Nair, S. K., et al. (2000) Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J. Immunol. 164, 5508ā€“5514.

    PubMedĀ  CASĀ  Google ScholarĀ 

  8. Steinman, M. R. (1991) The dendritic cell system and its role in immunogenicity. Ann. Rev. Immunol. 9, 271ā€“296.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Sallusto, F. and Lanzavecchia, A. (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and down regulated by tumour necrosis alpha. J. Exp. Med. 179, 1109ā€“1118.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Cella, M., Scheidegger, D., Plamer, L. K., Lane, P., Lanzavecchia, A., and Alber, G (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184, 747ā€“752.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Rodriguez, A., Regnault A., Kleijmeer, M., Ricciardi-Castagnoli, P., and Amigorena, S. (1999) Selective transport of internalized antigens to the cytosol for the MHC class I presentation in dendritic cells. Nat. Cell. Biol. 1, 362ā€“368.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Bachmann, M. F., Lutz, M. B., Layton, G. T., Harris, S. J., Fehr, T., Rescigno, M., and Ricciardi-Castagnoli, P. (1996) Dendritic cells process exogenous viral proteins and virus-like particles for class I presentation to CD8+ cytotoxic T lymphocytes. Eur. J. Immunol. 26, 2595ā€“2600.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Inaba, K., Metlay, J. P., Crowley, M. T., and Steinman, R. M. (1990) Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J. Exp. Med. 172, 631ā€“640.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Shen, Z., Reznikoff, G., Dranoff, G., Kennteth, L., and Rock, L. (1997) Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158, 2723ā€“2730.

    PubMedĀ  CASĀ  Google ScholarĀ 

  15. Sauter, B., Albert, M. L., Francisco, L., Larsson, M., Somersan, S., and Bhardwaj, N. (2000) Consequences of cell death: Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423ā€“433.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Rovere, P., Vallinoto, C., Bondanza, A., Crosti, M-A., Ricciardi-Castagnoli, P., Rugarli, C., and Manfredi, A. A. (1998) Cutting edge: Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J. Immunol. 161, 4467ā€“4471.

    PubMedĀ  CASĀ  Google ScholarĀ 

  17. Tsai, V., Southwood, S., Sidney, J., Sakaguchi, K., Kawakami, Y., Appella, E., et al. (1997) Identification of subdominant CTL epitopes of the GP100 melanoma-associated tumor antigen by primary in vitro immunization with peptide-pulsed dendritic cells. J. Immunol. 158, 1796ā€“1802.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Van Elsas, A., van der Burg, S. H., van der Minne, C. E., Borghi, M., Mourer, J. S., Melief, C. J. M., and Schrier, P. I. (1996) Peptide-pulsed dendritic cells induce tumoricidal cytotoxic T lymphocytes from healthy donors against stably HLA-Aāœ»0201-binding peptides from the Melan-A/Mart-1 self antigen. Eur. J. Immunol. 26, 1683ā€“1689.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  19. Hsu, F., Benike, C., Fagnoni, F., Liles, T. M., Czerwinski, K., Taidi, B., et al. (1996) Vaccination of patients with B-cell lymphoma using autologous antigen pulsed dendritic cells. Nat. Med. 2, 52ā€“58.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Bender, A., Sapp, M., Schuler, G., Steinman, R. M., and Bhardwaj, N. (1996) Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J. Immunol. Meth. 196, 121ā€“135.

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Romani, N. and Reider, D (1996) Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J. Immunol. Meth. 196, 137ā€“151.

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Caux, C., Dezutter-Dambuyant, D., Schmitt, D., and Banchereau, J. (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360, 258ā€“261.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Thurnher, M., Papesh, C., Ramoner, R., Gastl, G., Bock, G., Radmayr, C., et al. (1997) In vitro generation of CD83+ human blood dendritic cells for active tumor immunotherapy. Exp. Hematol. 25, 232ā€“237.

    PubMedĀ  CASĀ  Google ScholarĀ 

  24. Pietschmann, P., Stockl, J., Draxler, S., Majdic, O., and Knapp, W. (2000) Functional and phenotypic characteristics of dendritic cells generated in human plasma supplemented medium. Scand. J. Immunol. 52, 377ā€“383.

    ArticleĀ  Google ScholarĀ 

  25. Ali, S. A., Lynam, J., McLean, C. S., Entwisle, C., Loudon, P., Rojas, J. M., et al. (2002) Tumor regression induced by intratumor therapy with a disabled infectious single cycle (DISC) Herpes Simplex Virus (HSV) vector, DISC/HSV/murine granulocyte-macrophage immunity. J. Immunol. 168, 3512ā€“3519.

    PubMedĀ  CASĀ  Google ScholarĀ 

  26. Wang, L. R., Jeffery, F., Marty, G., Kuniyoshi, V., Bade, J., Ryback, E., et al. (2001) Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J. Immunother. 24, 66ā€“78.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  27. Esche C., Shurin M. R., and Lotze MT. (1999) The use of dendritic cells for cancer vaccination. Curr. Opin. Mol. Ther. 1, 72ā€“81.

    PubMedĀ  CASĀ  Google ScholarĀ 

  28. Morse M. A. and Lyerly H. K. (2000) Clinical applications of dendritic cell vaccines. Curr. Opin. Mol. Ther. 2, 20ā€“28.

    PubMedĀ  CASĀ  Google ScholarĀ 

  29. Aalamian, M., Pirtskhalaishvili, G., Nunez, A., Esche, C., Shurin, G. V., Huland, E., et al. (2001) Human prostate cancer regulates generation and maturation of monocyte-derived dendritic cells. Prostate 46, 68ā€“75.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Nishioka, Y., Hirao, M., Robbins, P. D., Lotze, M. T., and Tahara, H. (1999) Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res. 59, 4035ā€“4041.

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. Melero, I., Duarte, M., Ruiz, J., Sangro, B., Galofre, J., Mazzolini, G., et al. (1999) Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas. Gene Ther. 6, 1779ā€“1784.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Kikuchi, T. and Crystal, R. G. (1999) Anti-tumor immunity induced by in vivo adenovirus vector-mediated expression of CD40 ligand in tumor cells. Human Gene Ther. 10, 1375ā€“1387.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2003 Humana Press Inc.

About this protocol

Cite this protocol

McArdle, S.E.B., Ali, S.A., Li, G., Mian, S., Rees, R.C. (2003). Phenotypic and Functional Differences of Dendritic Cells Generated Under Different In Vitro Conditions. In: Russell, P.J., Jackson, P., Kingsley, E.A. (eds) Prostate Cancer Methods and Protocols. Methods in Molecular Medicineā„¢, vol 81. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-372-0:359

Download citation

  • DOI: https://doi.org/10.1385/1-59259-372-0:359

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-978-0

  • Online ISBN: 978-1-59259-372-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics