Skip to main content

Third Generation Prediction of Secondary Structures

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 143))

Abstract

The sequence-structure gap is rapidly increasing. Currently, databases for protein sequences (e.g., SWISS-PROT [1]) are expanding rapidly, largely due to large-scale genome sequencing projects: at the beginning of 1998, we know already all sequences for a dozen of entire genomes (2). This implies that despite significant improvements of structure determination techniques, the gap between the number of protein structures in public databases (PDB [3]), and the number of known protein sequences is increasing. The most successful theoretical approach to bridging this gap is homology modeling. It effectively raises the number of “known” 3D structures from 7000 to over 50,000 (4,5).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bairoch, A. and Apweiler, R. (1997) The SWISS-PROT protein sequence data bank and its new supplement TrEMBL. Nucleic Acids Res. 25, 31–36.

    PubMed  CAS  Google Scholar 

  2. Gaasterland, T. (1997) Genome sequencing projects. WWW document (http://genomes.rockefeller.edu): Rockefeller University.

  3. Bernstein, F. C., et al. (1977) The Protein Data Bank: a computer based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542.

    PubMed  CAS  Google Scholar 

  4. Rost, B. and Sander, C. (1996) Bridging the protein sequence-structure gap by structure predictions. Annu. Rev. Biophys. Biomol. Struct. 25, 113–136.

    PubMed  CAS  Google Scholar 

  5. Rost, B. and O’Donoghue, S. I. (1997) Sisyphus and prediction of protein structure. CABIOS 13, 345–356.

    PubMed  CAS  Google Scholar 

  6. CASP1. (1995) Special issue of Proteins 23, 295–462.

    Google Scholar 

  7. CASP2. (1997) Special issue of Proteins Suppl 1, 1–230.

    Google Scholar 

  8. Rost, B. and Sander, C. (1994) Structure prediction of proteins—where are we now? Curr. Opin. Biotech. 5, 372–380.

    PubMed  CAS  Google Scholar 

  9. Rost, B. (1998) Protein structure prediction in 1D, 2D, and 3D, in Encyclopedia of Computational Chemistry (von Ragué Schleyer, P., et al., eds.), Wiley, Chichester, UK, pp. 2242–2255.

    Google Scholar 

  10. Fasman, G. D. (1989) Prediction of Protein Structure and the Principles of Protein Conformation. Plenum, New York, London.

    Google Scholar 

  11. Sternberg, M. J. E. (1992) Secondary structure prediction. Curr. Opin. Struct. Biol. 2, 237–241.

    CAS  Google Scholar 

  12. Presnell, S. R. and Cohen, F. E. (1993) Artificial neural networks for pattern recognition in biochemical sequences. Annu. Rev. Biophys. Biomol. Struct. 22, 283–298.

    PubMed  CAS  Google Scholar 

  13. Barton, G. J. (1995) Protein secondary structure prediction. Curr. Opin. Struct. Biol. 5, 372–376.

    PubMed  CAS  Google Scholar 

  14. Defay, T. and Cohen, F. E. (1995) Evaluation of current techniques for ab initio protein structure prediction. Proteins 23, 431–445.

    PubMed  CAS  Google Scholar 

  15. Russell, R. B. and Sternberg, M. J. E. (1995) How good are we? Curr. Biol. 5, 488–490.

    PubMed  CAS  Google Scholar 

  16. Di Francesco, V., Garnier, J., and Munson, P. J. (1996) Improving protein secondary structure prediction with aligned homologous sequences. Protein Sci. 5, 106–113.

    PubMed  Google Scholar 

  17. Garnier, J., Gibrat, J.-F., and Robson, B. (1996) GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 266, 540–553.

    PubMed  CAS  Google Scholar 

  18. Rost, B. (1996) PHD: predicting one-dimensional protein structure by profile based neural networks. Methods Enzymol. 266, 525–539.

    PubMed  CAS  Google Scholar 

  19. Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22, 2577–2637.

    PubMed  CAS  Google Scholar 

  20. Rost, B. and Sander, C. (1994) 1D secondary structure prediction through evolutionary profiles, in Protein Structure by Distance Analysis (Bohr, H., and Brunak, S., eds.), IOS Press, Amsterdam, Oxford, Washington, pp. 257–276.

    Google Scholar 

  21. Rost, B. and Sander, C. (1993) Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232, 584–599.

    PubMed  CAS  Google Scholar 

  22. Rost, B., Sander, C., and Schneider, R. (1994) Redefining the goals of protein secondary structure prediction. J. Mol. Biol. 235, 13–26.

    PubMed  CAS  Google Scholar 

  23. Thornton, J. M., et al. (1992) Prediction of progress at last. Nature 354, 105–106.

    Google Scholar 

  24. Benner, S. A. and Gerloff, D. L. (1993) Predicting the conformation of proteins: man versus machine. FEBS Lett. 325, 29–33.

    PubMed  CAS  Google Scholar 

  25. Rost, B., Sander, C., and Schneider, R. (1993) Progress in protein structure prediction? TIBS 18, 120–123.

    PubMed  CAS  Google Scholar 

  26. Russell, R. B. and Barton, G. J. (1993) The limits of protein secondary structure prediction accuracy from multiple sequence alignment. J. Mol. Biol. 234, 951–957.

    PubMed  CAS  Google Scholar 

  27. Rost, B. and Sander, C. (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc. Natl. Acad. Sci. USA 90, 7558–7562.

    PubMed  CAS  Google Scholar 

  28. Sander, C. and Schneider, R. (1991) Database of homology-derived structures and the structural meaning of sequence alignment. Proteins 9, 56–68.

    PubMed  CAS  Google Scholar 

  29. Kendrew, J. C., et al. (1960) Structure of myoglobin: a three-dimensional Fourier synthesis at 2Å resolution. Nature 185, 422–427.

    PubMed  CAS  Google Scholar 

  30. Perutz, M. F., et al. (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5. 5Å resolution, obtained by X-ray analysis. Nature 185, 416–422.

    PubMed  CAS  Google Scholar 

  31. Pauling, L. and Corey, R. B. (1951) Configurations of polypeptide chains with favored orientations around single bonds: two new pleated sheets. Proc. Natl. Acad. Sci. USA 37, 729–740.

    PubMed  CAS  Google Scholar 

  32. Pauling, L., Corey, R. B., and Branson, H. R. (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. USA 37, 205–234.

    PubMed  CAS  Google Scholar 

  33. Szent-Györgyi, A. G. and Cohen, C. (1957) Role of proline in polypeptide chain configuration of proteins. Science 126, 697.

    PubMed  Google Scholar 

  34. Blout, E. R., et al. (1960) Dependence of the conformation of synthetic polypeptides on amino acid composition. J. Am. Chem. Soc. 82, 3787–3789.

    CAS  Google Scholar 

  35. Blout, E. R. (1962) The dependence of the conformation of polypetides and proteins upon amino acid composition, in Polyamino Acids, Polypeptides, and Proteins (Stahman, M., ed.), University of Wisconsin Press, Madison, WI, pp. 275–279.

    Google Scholar 

  36. Scheraga, H. A. (1960) Structural studies of ribonuclease III. A model for the secondary and tertiary structure. J. Am. Chem. Soc. 82, 3847–3852.

    CAS  Google Scholar 

  37. Davies, D. R. (1964) A correlation between amino acid composition and protein structure. J. Mol. Biol. 9, 605–609.

    PubMed  CAS  Google Scholar 

  38. Schiffer, M. and Edmundson, A. B. (1967) Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys. J. 7, 121.

    PubMed  CAS  Google Scholar 

  39. Pain, R. H. and Robson, B. (1970) Analysis of the code relating sequence to secondary structure in proteins. Nature 227, 62–63.

    PubMed  CAS  Google Scholar 

  40. Finkelstein, A. V. and Ptitsyn, O. B. (1971) Statistical analysis of the correlation among amino acid residues in helical, β-structural and non-regular regions of globular proteins. J. Mol. Biol. 62, 613–624.

    PubMed  CAS  Google Scholar 

  41. Robson, B. and Pain, R. H. (1971) Analysis of the code relating sequence to conformation in proteins: possible implications for the mechanism of formation of helical regions. J. Mol. Biol. 58, 237–259.

    PubMed  CAS  Google Scholar 

  42. Chou, P. Y. and Fasman, U. D. (1974) Prediction of protein conformation. Biochemistry 13, 211–215.

    PubMed  CAS  Google Scholar 

  43. Lim, V. I. (1974) Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure. J. Mol. Biol. 88, 857–872.

    PubMed  CAS  Google Scholar 

  44. Rose, G. D. (1978) Prediction of chain turns in globular proteins on a hydrophobic basis. Nature 272, 586–590.

    PubMed  CAS  Google Scholar 

  45. Kabsch, W. and Sander, C. (1983) How good are predictions of protein secondary structure? FEBS Lett. 155, 179–182.

    PubMed  CAS  Google Scholar 

  46. Rost, B. (2000) Neural networks for protein structure prediction: hype or hit? Preprint, (http://cubic.bioc.columbia.edu/papers/Pre 1999_tics/) Columbia University, New York.

    Google Scholar 

  47. Rost, B. and Sander, C. (1993) Secondary structure prediction of all-helical proteins in two states. Protein Eng. 6, 831–836.

    PubMed  CAS  Google Scholar 

  48. Rost, B. and Sander, C. (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19, 55–72.

    PubMed  CAS  Google Scholar 

  49. Kabat, E. A. and Wu, T. T. (1973) The influence of nearest-neighbor amino acids on the conformation of the middle amino acid in proteins: comparison of predicted and experimental determination of β-sheets in concanavalin A. Proc. Natl. Acad. Sci. USA 70, 1473–1477.

    PubMed  CAS  Google Scholar 

  50. Maxfield, F. R. and Scheraga, H. A. (1976) Status of empirical methods for the prediction of protein backbone topography. Biochemistry 15, 5138–5153.

    PubMed  CAS  Google Scholar 

  51. Robson, B. (1976) Conformational properties of amino acid residues in globular proteins. J. Mol. Biol. 107, 327–356.

    PubMed  CAS  Google Scholar 

  52. Nagano, K. (1977) Triplet information in helix prediction applied to the analysis of super-secondary structures. J. Mol. Biol. 109, 251–274.

    PubMed  CAS  Google Scholar 

  53. Garnier, J., Osguthorpe, D. J., and Robson, B. (1978) Analysis of the accuracy and Implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120, 97–120.

    PubMed  CAS  Google Scholar 

  54. Gibrat, J.-F., Garnier, J., and Robson, B. (1987) Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J. Mol. Biol. 198, 425–443.

    PubMed  CAS  Google Scholar 

  55. Biou, V., et al. (1988) Secondary structure prediction: combination of three different methods. Protein Eng. 2, 185–91.

    PubMed  CAS  Google Scholar 

  56. Gascuel, O. and Golmard, J. L. (1988) A simple method for predicting the secondary structure of globular proteins: implications and accuracy. CABIOS 4, 357–365.

    PubMed  CAS  Google Scholar 

  57. Lupas, A., Van Dyke, M., and Stock, J. (1991) Predicting coiled coils from protein sequences. Science 252, 1162–1164.

    CAS  Google Scholar 

  58. Viswanadhan, V. N., Denckla, B., and Weinstein, J. N. (1991) New joint prediction algorithm (Q7-JASEP) improves the prediction of protein secondary structure. Biochemistry 30, 11,164–11,172.

    PubMed  CAS  Google Scholar 

  59. Juretic, D., et al. (1993) Conformational preference functions for predicting helices in membrane proteins. Biopolymers 33, 255–273.

    PubMed  CAS  Google Scholar 

  60. Mamitsuka, H. and Yamanishi, K. (1993) Protein a-helix region prediction based on stochastic-rule learning, in 26th Annual Hawaii International Conference on System Sciences (eds.), IEEE Computer Society, Maui, HI, pp. 659–668.

    Google Scholar 

  61. Donnelly, D., Overington, J. P., and Blundell, T. L. (1994) The prediction and orientation of α-helices from sequence alignments: the combined use of environment-dependent substitution tables, Fourier transform methods and helix capping rules. Protein Eng. 7, 645–653.

    PubMed  CAS  Google Scholar 

  62. Ptitsyn, O. B. and Finkelstein, A. V. (1983) Theory of protein secondary structure and algorithm of its prediction. Biopolymers 22, 15–25.

    PubMed  CAS  Google Scholar 

  63. Taylor, W. R. and Thornton, J. M. (1983) Prediction of super-secondary structure in proteins. Nature 301, 540–542.

    PubMed  CAS  Google Scholar 

  64. Cohen, F. E. and Kuntz, I. D. (1989) Tertiary structure prediction, in Prediction of Protein Structure and the Principles of Protein Conformation (Fasman, G. D., eds.), Plenum, New York, London, pp. 647–706.

    Google Scholar 

  65. Rooman, M. J., Kocher, J. P., and Wodak, S. J. (1991) Prediction of protein backbone conformation based on seven structure assignments: influence of local interactions. J. Mol. Biol. 221, 961–979.

    PubMed  CAS  Google Scholar 

  66. Qian, N. and Sejnowski, T. J. (1988) Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 202, 865–884.

    PubMed  CAS  Google Scholar 

  67. Bohr, H., et al. (1988) Protein secondary structure and homology by neural networks. FEBS Lett. 241, 223–228.

    PubMed  CAS  Google Scholar 

  68. Holley, H. L. and Karplus, M. (1989) Protein secondary structure prediction with a neural network. Proc. Natl. Acad. Sci. USA 86, 152–156.

    PubMed  CAS  Google Scholar 

  69. Kneller, D. G., Cohen, F. E., and Langridge, R. (1990) Improvements in protein secondary structure prediction by an enhanced neural network. J. Mol. Biol. 214, 171–182.

    PubMed  CAS  Google Scholar 

  70. Stolorz, P., Lapedes, A., and Xia, Y. (1992) Predicting protein secondary structure using neural net and statistical methods. J. Mol. Biol. 225, 363–377.

    PubMed  CAS  Google Scholar 

  71. Zhang, X., Mesirov, J. P., and Waltz, D. L. (1992) Hybrid system for protein secondary structure prediction. J. Mol. Biol. 225, 1049–1063.

    PubMed  CAS  Google Scholar 

  72. Maclin, R. and Shavlik, J. W. (1993) Using knowledge-based neural networks to improve algorithms: refining the Chou-Fasman algorithm for protein folding. Machine Learning 11, 195–215.

    Google Scholar 

  73. Chandonia, J.-M. and Karplus, M. (1995) Neural networks for secondary structure and structural class predictions. Protein Sci. 4, 275–285.

    PubMed  CAS  Google Scholar 

  74. Mitchell, E. M., et al. (1992) Use of techniques derived from graph theory to compare secondary structure motifs in proteins. J. Mol. Biol. 212, 151–166.

    Google Scholar 

  75. Geourjon, C. and Deléage, G. (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. CABIOS 11, 681–684.

    PubMed  CAS  Google Scholar 

  76. Kanehisa, M. (1988) A multivariate analysis method for discriminating protein secondary structural segments. Protein Eng. 2, 87–92.

    PubMed  CAS  Google Scholar 

  77. Munson, P. J. and Singh, R. K. (1997) Multi-body interactions within the graph of protein structure, in Fifth International Conference on Intelligent Systems for Molecular Biology (Gaasterland, T., et al., eds.), AAAI Press, Halkidiki, Greece, pp. 198–201.

    Google Scholar 

  78. King, R. D., et al. (1992) Drug design by machine learning: the use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase. Proc. Natl. Acad. Sci. USA 89, 11,322–11,326.

    PubMed  CAS  Google Scholar 

  79. Muggleton, S., King, R. D., and Sternberg, M. J. E. (1992) Protein secondary structure prediction using logic-based machine learning. Protein Eng. 5, 647–657.

    PubMed  CAS  Google Scholar 

  80. Frishman, D. and Argos, P. (1995) Knowledge-based protein secondary structure assignment. Proteins 23, 566–579.

    PubMed  CAS  Google Scholar 

  81. Zhu, Z.-Y. and Blundell, T. L. (1996) The use of amino acid patterns of classified helices and strands in secondary structure prediction. J. Mol. Biol. 260, 261–276.

    PubMed  CAS  Google Scholar 

  82. Asogawa, M. (1997) Beta-sheet prediction using inter-strand residue pairs and refinement with Hopfield neural network, in Fifth International Conference on Intelligent Systems for Molecular Biology (Gaasterland, T., et al., eds.), AAAI Press, Halkidiki, Greece, pp. 48–51.

    Google Scholar 

  83. Yi, T.-M. and Lander, E. S. (1993) Protein secondary structure prediction using nearest-neigbor methods. J. Mol. Biol. 232, 1117–1129.

    PubMed  CAS  Google Scholar 

  84. Solovyev, V. V. and Salamov, A. A. (1994) Predicting a-helix and β-strand segments of globular proteins. CABIOS 10, 661–669.

    PubMed  CAS  Google Scholar 

  85. Salamov, A. A. and Solovyev, V. V. (1995) Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignment. J. Mol. Biol. 247, 11–15.

    PubMed  CAS  Google Scholar 

  86. Kabsch, W. and Sander, C. (1983) Segment83. unpublished.

    Google Scholar 

  87. Schneider, R. (1989) Sekundärstrukturvorhersage von Proteinen unter Berücksichtigung von Tertiärstrukturaspekten. Diploma thesis: Department of Biology, University of Heidelberg, Heidelberg, Germany.

    Google Scholar 

  88. Devereux, J., Haeberli, P., and Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12, 387–395.

    PubMed  CAS  Google Scholar 

  89. Rost, B. and Schneider, R. (1998) Pedestrian guide to analysing sequence databases, in Core Techniques in Biochemistry (Ashman, K., ed.) http://cubic.bioc. columbia.edu/papers/1999_pedestrian/, Springer, Heidelberg, pp. in press.

    Google Scholar 

  90. Dao-pin, S., et al. (1991) Contributions of surface salt bridges to the stability of bacteriophage T4 lysozyme determined by directed mutagenesis. Biochemistry 30, 7142–7153.

    Google Scholar 

  91. Doolittle, R. F. (1986) Of URFs and ORFs: A Primer on How to Analyze Derived Amino Acid Sequences. University Science Books, Mill Valley CA.

    Google Scholar 

  92. Chothia, C. and Lesk, A. M. (1986) The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826.

    PubMed  CAS  Google Scholar 

  93. Lesk, A. M. (1991) Protein Architecture—A Practical Approach. Oxford University Press, Oxford, New York, Tokyo.

    Google Scholar 

  94. Rost, B. (1998) Twilight zone of protein sequence alignments. Prof. Enginering 12, S85–S94.

    Google Scholar 

  95. Rost, B. (1997) Protein structures sustain evolutionary drift. Fold. Des. 2, S19–S24.

    PubMed  CAS  Google Scholar 

  96. Rost, B., O’Donoghue, S., and Sander, C. (1998) Midnight zone of protein structure evolution. Preprint (http://cubic.bioc.columbia.edu/papers/Pre1998_midnight/) Columbia University, New York.

    Google Scholar 

  97. Lichtarge, O., Bourne, H. R., and Cohen, F. E. (1996) An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257, 342–358.

    PubMed  CAS  Google Scholar 

  98. Pazos, F., et al. (1997) Comparative analysis of different methods for the detection of specificity regions in protein families, in BCEC97: Bio-Computing and Emergent Computation (Olsson, B., Lundh, D., and Narayanan, A., eds.), World Scientific, Skövde, Sweden, pp. 132–145.

    Google Scholar 

  99. Dickerson, R. E., Timkovich, R., and Almassy, R. J. (1976) The cytochrome fold and the evolution of bacterial energy metabolism. J. Mol. Biol. 100, 473–491.

    PubMed  CAS  Google Scholar 

  100. Dickerson, R. E. (1971) The structure of cytochrome c and the rates of molecular evolution. J. Mol. Evol. 1, 26–45.

    PubMed  CAS  Google Scholar 

  101. Frampton, J., et al. (1989) DNA-binding domain ancestry. Nature 342, 134.

    PubMed  CAS  Google Scholar 

  102. Benner, S. A. (1989) Patterns of divergence in homologous proteins as indicators of tertiary and quaternary structure. Adv. Enzyme Regul. 28, 219–236.

    PubMed  CAS  Google Scholar 

  103. Bazan, J. F. (1990) Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. USA 87, 6934–6938.

    PubMed  CAS  Google Scholar 

  104. Benner, S. A. and Gerloff, D. (1990) Patterns of divergence in homologous proteins as indicators of secondary and tertiary structure of the catalytic domain of protein kinases. Adv. Enzyme Regul. 31, 121–181.

    Google Scholar 

  105. Niermann, T. and Kirschner, K. (1990) Improving the prediction of secondary structure of “TIM-barrel” enzymes. Protein Eng. 4, 137–147.

    CAS  Google Scholar 

  106. Barton, G. J., et al. (1991) Amino acid sequence analysis of the annexin supergene family of proteins. Eur. J. Biochem. 198, 749–760.

    PubMed  CAS  Google Scholar 

  107. Benner, S. A. (1992) Predicting de novo the folded structure of proteins. Curr. Opin. Struct. Biol. 2, 402–412.

    CAS  Google Scholar 

  108. Gibson, T. J. (1992) Assignment of α-helices in multiply aligned protein sequences—applications to DNA binding motifs, in Patterns in Protein Sequence and Structure (Taylor, W. R., ed.), Berlin-Heidelberg, Springer-Verlag, pp. 99–110.

    Google Scholar 

  109. Musacchio, A., et al. (1992) SH3—an abundant protein domain in search of a function. FEBS Lett. 307, 55–61.

    PubMed  CAS  Google Scholar 

  110. Barton, G. J. and Russell, R. B. (1993) Protein structure prediction. Nature 361, 505–506.

    PubMed  CAS  Google Scholar 

  111. Boscott, P. E., Barton, G. J., and Richards, W. G. (1993) Secondary structure prediction for homology modelling. Protein Eng. 6, 261–266.

    PubMed  CAS  Google Scholar 

  112. Gerloff, D. L., et al. (1993) The nitrogenase MoFe protein. FEBS Lett. 318, 118–124.

    PubMed  CAS  Google Scholar 

  113. Gibson, T. J., Thompson, J. D., and Abagyan, R. A. (1993) Proposed structure for the DNA-binding domain of the Helix-Loop-Helix family of eukaryotic gene regulatory proteins. Protein Eng. 6, 41–50.

    PubMed  CAS  Google Scholar 

  114. Livingstone, C. D. and Barton, G. J. (1994) Secondary structure prediction from multiple sequence data: blood clotting factor XIII and versinia protein-tyrosine phosphatas. Int. J. Peptide Protein Res. 44, 239–244.

    CAS  Google Scholar 

  115. Hansen, J. E., et al. (1996) Prediction of the secondary structure of HIV-1 gp120. Proteins 25, 1–11.

    PubMed  CAS  Google Scholar 

  116. Valencia, A., et al. (1995) Prediction of the structure of GroES and its interaction with GroEL. Proteins 22, 199–209.

    PubMed  CAS  Google Scholar 

  117. Maxfield, F. R. and Scheraga, H. A. (1979) Improvements in the prediction of protein topography by reduction of statistical errors. Biochemistry 18, 697–704.

    PubMed  CAS  Google Scholar 

  118. Zvelebil, M. J., et al. (1987) Prediction of protein secondary structure and active sites using alignment of homologous sequences. J. Mol. Biol. 195, 957–961.

    PubMed  CAS  Google Scholar 

  119. Rost, B., Sander, C., and Schneider, R. (1994) PHD—an automatic server for protein secondary structure prediction. CABIOS 10, 53–60.

    PubMed  CAS  Google Scholar 

  120. Altschul, S. F. and Gish, W. (1996) Local alignment statistics. Methods Enzymol. 266, 460–480.

    PubMed  CAS  Google Scholar 

  121. Schneider, R. (1994) Sequenz und Sequenz-Struktur Vergleiche und deren Anwendung für die Struktur-und Funktionsvorhersage von Proteinen. PhD thesis: University of Heidelberg, Heidelberg, Germany.

    Google Scholar 

  122. Hubbard, T. J. P. and Park, J. (1995) Fold recognition and ab initio structure predictions using Hidden Markov models and β-strand pair potentials. Proteins 23, 398–402.

    PubMed  CAS  Google Scholar 

  123. Mehta, P. K., Heringa, J., and Argos, P. (1995) A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%. Protein Sci. 4, 2517–2525.

    PubMed  CAS  Google Scholar 

  124. Riis, S. K. and Krogh, A. (1996) Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. J. Comp. Biol. 3, 163–183.

    CAS  Google Scholar 

  125. Gerloff, D. L. and Cohen, F. E. (1996) Secondary structure prediction and unrefined tertiary structure prediction for cyclin A, B, and D. Proteins 24, 18–34.

    PubMed  CAS  Google Scholar 

  126. Frishman, D. and Argos, P. (1997) 75% accuracy in protein secondary structure prediction. Proteins 27, 329–335.

    PubMed  CAS  Google Scholar 

  127. Salamov, A. A. and Solovyev, V. V. (1997) Protein secondary structure prediction using local alignments. J. Mol. Biol. 268, 31–36.

    PubMed  CAS  Google Scholar 

  128. Levin, J. M., et al. (1993) Quantification of secondary structure prediction improvement using multiple alignment. Protein Eng. 6, 849–854.

    PubMed  CAS  Google Scholar 

  129. King, R. D. and Sternberg, M. J. (1996) Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci. 5, 2298–2310.

    PubMed  CAS  Google Scholar 

  130. Koyama, S., et al. (1993) Structure of the PI3K SH3 domain and analysis of the SH3 family. Cell 72, 945–952.

    PubMed  CAS  Google Scholar 

  131. Musacchio, A., et al. (1992) Crystal structure of a Src-homology 3 (SH3) domain. Nature 359, 851–855.

    PubMed  CAS  Google Scholar 

  132. Rost, B. (1997) PredictProtein—internet prediction service. WWW document (http://cubic.bioc.columbia.edu/predictprotein): Columbia University, New York.

    Google Scholar 

  133. Rost, B. and Schneider, R. (1996) WWW services for sequence analysis. WWW document (http://cubic.bioc.columbia.edu/doc/links_index.html): Columbia University, New York.

    Google Scholar 

  134. Rost, B. (1998) Better 1D predictions by experts with machines. Proteins, in press.

    Google Scholar 

  135. Rost, B. and Valencia, A. (1996) Pitfalls of protein sequence analysis. Curr. Opin. Biotechnol. 7, 457–461.

    PubMed  CAS  Google Scholar 

  136. Rost, B., Casadio, R., and Fariselli, P. (1996) Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci. 5, 1704–1718.

    PubMed  CAS  Google Scholar 

  137. Meitinger, T., et al. (1993) Molecular modelling of the Norrie disease protein predicts a cysteine knot growth factor tertiary structure. Nature Gen., 5, 376–380.

    CAS  Google Scholar 

  138. Rawlings, D. J., et al. (1993) Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID M mice. Science 261, 358–361.

    PubMed  CAS  Google Scholar 

  139. Lupas, A., et al. (1994) Predicted secondary structure of the 20S proteasome and model structure of the putative peptide channel. FEBS Lett. 354, 45–49.

    PubMed  CAS  Google Scholar 

  140. Viguera, E., et al. (1994) Mammalian L-amino acid decarboxylases producing 1,4-diamines: analogies among differences. TIBS 19, 318–319.

    PubMed  CAS  Google Scholar 

  141. Fischer, D. and Eisenberg, D. (1996) Fold recognition using sequence-derived properties. Protein Sci. 5, 947–955.

    PubMed  CAS  Google Scholar 

  142. Rost, B., Schneider, R., and Sander, C. (1997) Protein fold recognition by prediction-based threading. J. Mol. Biol. 270, 471–480.

    PubMed  CAS  Google Scholar 

  143. Springer, T. A. (1997) Folding of the N-terminal, ligand-binding region of integrin α-subunits into a β-propeller domain. Proc. Natl. Acad. Sci. USA 94, 65–72.

    PubMed  CAS  Google Scholar 

  144. Rost, B. (1996) Accuracy of predicting buried helices by PHDsec. WWW document (http://cubic.bioc.columbia.edu/results/1996/PredBuriedHelices.html). Columbia University, New York.

    Google Scholar 

  145. Minor, D. L. J. and Kim, P. S. (1996) Context-dependent secondary structure formation of a designed protein sequence. Nature 380, 730–734.

    PubMed  CAS  Google Scholar 

  146. Rost, B. (1996) 1D structure prediction for Chameleon (IgG binding domain of protein G) WWW document (http://cubic.bioc.columbia.edu/results/1996/PredCameleon.html): Columbia University, New York.

    Google Scholar 

  147. Dalal, S., Balasubramanian, S., and Regan, L. (1997) Protein alchemy: changing β-sheet into α-helix. Nat. Struct. Biol. 4, 548–552.

    PubMed  CAS  Google Scholar 

  148. Chou, P. Y. and Fasman, G. D. (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. 47, 45–148.

    PubMed  CAS  Google Scholar 

  149. PSI-BLAST: Altschul, S., et al. (1997) Gapped Blast and PSI-Blast: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402.

    PubMed  CAS  Google Scholar 

  150. PSI-PRED: Jones, D. T. (1999) Protein secondary structure prediction based on position specific scoring matrices. J. Mol. Biol. 292, 195–202.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Rost, B., Sander, C. (2000). Third Generation Prediction of Secondary Structures. In: Webster, D.M. (eds) Protein Structure Prediction. Methods in Molecular Biology™, vol 143. Humana Press. https://doi.org/10.1385/1-59259-368-2:71

Download citation

  • DOI: https://doi.org/10.1385/1-59259-368-2:71

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-637-6

  • Online ISBN: 978-1-59259-368-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics