Geometrical Docking Algorithms: A Practical Approach

  • Haim J. Wolfson
  • Ruth Nussinov
Part of the Methods in Molecular Biology™ book series (MIMB, volume 143)

Abstract

The problem of docking of molecules displaying some level of flexibility is extremely important in computational structural biology.

Keywords

Depression Lactate Methotrexate Expense NADPH 

References

  1. 1.
    Cherfils, J., Duquerroy, S., and Janin, J. (1991) Protein-protein recognition analyzed by docking simulations. Proteins: Struct. Funct. Genet. 11, 271–280.CrossRefGoogle Scholar
  2. 2.
    Cherfils, J. and Janin, J. (1993) Protein docking algorithms: simulating molecular recognition. Curr. Opin. Struct. Biol. 3, 265–269.CrossRefGoogle Scholar
  3. 3.
    Lawrence, M. C. and Colman, P. M. (1993) Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950.PubMedCrossRefGoogle Scholar
  4. 4.
    Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., and Ferrin, T. (1982) A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161, 269–288.PubMedCrossRefGoogle Scholar
  5. 5.
    Goodsell, D. S. and Olson, A. J. (1990) Automated docking of substrates to proteins by simulated annealing. Proteins: Struct. Funct. Genet. 8, 195–202.CrossRefGoogle Scholar
  6. 6.
    Jiang, F. and Kim, S. H. (1991) “Soft docking”: matching of molecular surface cubes. J. Mol. Biol. 219, 79–102.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang, H. (1991) Grid-search molecular accessible surface algorithm for solving the protein docking problem. J. Comp. Chem. 12, 746–750.CrossRefGoogle Scholar
  8. 8.
    Shoichet, B. K. and Kuntz, I. D. (1991) Protein docking and complementarity. J. Mol. Biol. 221, 79–102.CrossRefGoogle Scholar
  9. 9.
    Walls, P. H. and Sternberg, M. J. E. (1992) New algorithm to model protein-protein recognition based on surface complementarity. J. Mol. Biol. 228, 277–297.PubMedCrossRefGoogle Scholar
  10. 10.
    Kasinos, N., Lilley, G. A., Subbarao, N., and Haneef, I. (1992) A robust and efficient automated docking algorithm for molecular recognition. Protein Eng. 5, 69–75.PubMedCrossRefGoogle Scholar
  11. 11.
    Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A. A., Aflalo, C., and Vakser, I. A. (1992) Molecular surface recognition: determination of geometric fit between protein and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA 89, 2195–2199.PubMedCrossRefGoogle Scholar
  12. 12.
    Norel, R., Fischer, D., Wolfson, H. J., and Nussinov, R. (1994) Molecular surface recognition by a computer vision based technique. Protein Eng. 7, 39–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Norel, R., Lin, S. L., Wolfson, H., and Nussinov, R. (1994) Shape complementarity at protein-protein interfaces. Biopolymers 34, 933–940.PubMedCrossRefGoogle Scholar
  14. 14.
    Norel, R., Lin, S. L., Wolfson, H., and Nussinov, R. (1995) Molecular surface complementarity at protein-protein interfaces: the critical role played by surface normals at well placed, sparse, points in docking. J. Mol. Biol. 252, 263–273.PubMedCrossRefGoogle Scholar
  15. 15.
    Fischer, D., Lin, S. L., Wolfson H. J., and Nussinov, R. (1995) A geometry-based suite of molecular docking processes. J. Mol. Biol. 248, 459–477.PubMedGoogle Scholar
  16. 16.
    Connolly, M. (1986) Shape complementarity at the hemoglobin α1β1 subunit interfaces. Biopolymers 25, 1229–1247.PubMedCrossRefGoogle Scholar
  17. 17.
    Helmer-Citterich, M. and Tramontano, A. (1994) PUZZLE: a new method for automated protein docking based on surface shape complementarity. J. Mol. Biol. 235, 1021–1031.PubMedCrossRefGoogle Scholar
  18. 18.
    Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F. Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1997) The protein databank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542.CrossRefGoogle Scholar
  19. 19.
    Norel, R., Lin, S. L., Xu, D., Wolfson, H., and Nussinov, R. (1998) Molecular surface variability and induced conformational changes upon protein-protein association, in Structure, Motion, Interaction and Expression of Biological Macromolecules. Proceedings of the Tenth Conversation (Sarma, R. H. and Sarma, M. H., eds.), Adenine Press, Albany, NY, pp. 31–51.Google Scholar
  20. 20.
    Janin, J., Miller, S., and Chothia, C. (1988) Surface, subunit interfaces and interior of oligomeric proteins. J. Mol. Biol. 204, 155–164.PubMedCrossRefGoogle Scholar
  21. 21.
    Peters, K. P., Fauck, J., and Frommel, C. (1997) The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J. Mol. Biol 256, 201–213.CrossRefGoogle Scholar
  22. 22.
    Nussinov, R. and Wolfson, H. (1991) Efficient detection of motifs in biological macromolecules by computer vision techniques. Proc. Natl. Acad. Sci. USA 88, 10,495–10,499.PubMedCrossRefGoogle Scholar
  23. 23.
    Connolly, M. L. (1983) Analytical molecular surface calculation. J. Appl. Cryst. 16, 548–558.CrossRefGoogle Scholar
  24. 24.
    Lin, S. L., Nussinov, R. Fischer, D., and Wolfson, H. (1994) Molecular surface representation by sparse critical points. Proteins 18, 94–101.PubMedCrossRefGoogle Scholar
  25. 25.
    Lin, S. L. and Nussinov, R. (1996) Molecular recognition via the face center representation of molecular surface. J. Mol. Graphics 14, 78–97.CrossRefGoogle Scholar
  26. 26.
    Sandak, B., Wolfson, H., and Nussinov, R. (1998) Flexible docking allowing induced fit in proteins: insights from open to closed conformational isomers. Proteins 32, 159–174.PubMedCrossRefGoogle Scholar
  27. 27.
    Gerstein, M., Lesk, A. M., and Chothia, C. (1994) Structural mechanisms for domain movements in proteins. Biochemistry 33, 6739–6749.PubMedCrossRefGoogle Scholar
  28. 28.
    DesJarlais, R. L., Sheridan, R. P., Dixon, J. S., Kuntz, I. D., and Venkataraghavan, R. (1986) Docking flexible ligands to macromolecular receptors by molecular shape. J. Med. Chem. 29, 2149–2153.PubMedCrossRefGoogle Scholar
  29. 29.
    Leach, A. R. and Kuntz, I. D. (1992) Conformational analysis of flexible ligands in macromolecular receptor sites. J. Comp. Chem. 13, 730–748.CrossRefGoogle Scholar
  30. 30.
    Knegtel, R. M. A., Antoon, C. R., Boelens, R., and Kaptein, R. (1994) Monty: a Monte Carlo approach to protein-DNA recognition. J. Mol. Biol. 235, 318–324.PubMedCrossRefGoogle Scholar
  31. 31.
    Clark, K. P. and Ajay, (1995) Flexible ligand docking without parameter adjustment across four ligand receptor complexes. J. Comp. Chem. 16, 1210–1226.CrossRefGoogle Scholar
  32. 32.
    Welch, W., Ruppert, J., and Jain, A. N. (1996) Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chem. and Biol. 3, 449–462.CrossRefGoogle Scholar
  33. 33.
    Rarey, M., Kramer, B., Lengauer, T., and Klebe, G. (1996) A fast flexible docking method using incremental construction algorithm. J. Mol. Biol. 261, 470–489.PubMedCrossRefGoogle Scholar
  34. 34.
    Jones, G., Willet, P., Glen, R. C., Leach, A., and Taylor, R. (1997) Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748.PubMedCrossRefGoogle Scholar
  35. 35.
    Leach, A. R. (1994) Ligand docking to proteins with discrete side-chain flexibility. J. Mol. Biol. 235, 345–356.PubMedCrossRefGoogle Scholar
  36. 36.
    Jones, G., Willet, P., and Glen, R. C. (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 245, 43–53.PubMedCrossRefGoogle Scholar
  37. 37.
    Sandak, B., Nussinov, R., and Wolfson, H. J. (1995) An automated computer-vision and robotics based technique for 3-D flexible biomolecular docking and matching. Comp. Appl. BioSci. 11, 87–99.PubMedGoogle Scholar
  38. 38.
    Sandak, B., Wolfson, H. J., and Nussinov, R. (1996) Hinge-bending at molecular interfaces: automated docking of a dihydroxyethylene-containing inhibitor of the HIV-1 protease, in Proceedings of the Ninth Conversation in Stereodynamics (Sarma, R. H. and Sarma, M. H., eds.), Adenine Press, Albany, NY, 233–252.Google Scholar
  39. 39.
    Sandak, B., Nussinov, R., and Wolfson, H. J. (1996) Docking of conformationally flexible proteins, in Seventh Symposium on Combinatorial Pattern Matching, Laguna Beach, CA, and Lecture Notes in Computer Science, Springer Verlag, New York. 1075, 271–287.Google Scholar
  40. 40.
    Sandak, B., Nussinov, R., and Wolfson, H. J. (1998) A flexible method for biomolecular structural recognition and docking allowing conformational flexibility. J. Co.Google Scholar
  41. 41.
    Lengauer, T. and Rarey, M. (1996) Computational methods for biomolecular docking. Curr. Opin. Struct. Biol. 6, 402–406.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Haim J. Wolfson
    • 1
  • Ruth Nussinov
    • 2
  1. 1.Computer Science Department, School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Laboratory of Experimental and Computational BiologySAICFrederick

Personalised recommendations