Flow Cytometric Detection of MMTV Superantigens

  • Gary Winslow
Part of the Methods in Molecular Biology™ book series (MIMB, volume 214)

Abstract

Mouse mammary tumor viral superantigens (vSAgs) are produced by germline-encoded proviruses and infectious viruses (for reviews see refs. 1,2. Like other superantigens, they interact with class II major histocompatiblity complex (MHC) proteins and trigger T-cell proliferation via recognition of particular variable elements (Vβ) of the T-cell receptor (TCR). Prior to the discovery of their viral origin, the provirus-encoded vSAgs were referred to as Mls (minor lymphocyte stimulatory) antigens (3). Unlike the bacterial superantigens, which are produced as small soluble proteins, the vSAgs are produced as membrane glycoproteins that transit the exocytic pathway and undergo partial proteolytic processing by cellular endoproteases (4). Proteolytic processing appears to be necessary for vSAgs to activate T cells (5-7), and available data suggest that a soluble carboxy terminal processing product may be sufficient for vSAg function (8). The vSAgs require class II MHC proteins to be presented to T cells (9, although not necessarily for surface expression (8).

Keywords

Vortex Penicillin Syringe Trypsin Streptomycin 

References

  1. 1.
    Acha-Orbea, H. and MacDonald, H. R. (1995) Superantigens of mouse mammary tumor virus. Ann. Rev. Immunol. 13, 459–486.CrossRefGoogle Scholar
  2. 2.
    Acha-Orbea, H., Finke, D., Attinger, A., Schmid, S., Wehrli, N., Vacheron, S., et al. (1999) Interplays between mouse mammary tumor virus and the cellular and humoral immune response. Immunol. Rev. 168, 287–303.PubMedCrossRefGoogle Scholar
  3. 3.
    Festenstein, H. (1973) Immunogenetic and biological aspects of in vitro lymphocyte allotransformation (MLR) in the mouse. Transplant. Rev. 15, 62–88.PubMedGoogle Scholar
  4. 4.
    Winslow, G. M., Kappler, J., and Marrack, P. (1997) Structural features of MMTV superantigens. In Superantigens: Structure, Biology, and Relevance to Human Disease. Leung, D., Huber, B., and Schlieverts, P. (eds.), Marcel Dekker, New York, NY, pp. 37–60.Google Scholar
  5. 5.
    Mix, D. and Winslow, G.M. (1996) Proteolytic processing activates a viral superantigen. J. Exp. Med. 184, 1549–1554.PubMedCrossRefGoogle Scholar
  6. 6.
    Winslow, G. M., Cronin, T., Mix, D., and Reilly, M. (1998) Redundant proteolytic activation of a viral superantigen. Mol. Immunol. 35, 897–903.PubMedCrossRefGoogle Scholar
  7. 7.
    Denis, F., Shoukry, N. H., Delcourt, M., Thibodeau, J., Labrecque, N., McGrath, H., et al. (2000) Alternative proteolytic processing of mouse mammary tumor virus superantigens. J. Virol. 74, 3067–3073.PubMedCrossRefGoogle Scholar
  8. 8.
    Reilly, M., Mix, D., Reilly, A. A., Ye, Y. Y., and Winslow, G. M. (2000) Intercellular transfer of a soluble viral superantigen. J. Virol. 74, 8262–8267.PubMedCrossRefGoogle Scholar
  9. 9.
    Beutner, U., McLellan, B., Kraus, E., and Huber, B. T. (1996) Lack of MMTV superantigen presentation in MHC class II-deficient mice. Cell. Immunol. 168, 141–147.PubMedCrossRefGoogle Scholar
  10. 10.
    Scherer, M. T., Ignatowicz, L., Winslow, G., Kappler, J. W., and Marrack, P. (1993) Super antigens: bacterial and viral proteins that manipulate the immune system. Ann. Rev. Cell Biol. 9, 101–128.PubMedCrossRefGoogle Scholar
  11. 11.
    Acha-Orbea, H., Held, W., Waanders, G. A., Shakhov, A. N., Scarpellino, L., Lees, R. K., and MacDonald, H. R. (1993) Exog-enous and endogenous mouse mammary tumor virus superantigens. Immunol. Rev. 131, 5–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Held, W., Shakhov, A. N., Waanders, G., Scarpellino, L., Luethy, R., Kraehenbuhl, J.-P., et al. (1992) An exogenous mouse mammary tumor virus with properties of Mls-1a. J. Exp. Med. 175, 1623–1633.PubMedCrossRefGoogle Scholar
  13. 13.
    ArdavÍn, C., Waanders, G., Ferrero, I., Anju’ere, F., Acha-Orbea, H., and MacDonald, H.R. (1996) Expression and presentation of endogenous mouse mammary tumor virus superantigens by thymic and splenic dendritic cells and B cells. J. Immunol. 157, 2798–2794.Google Scholar
  14. 14.
    Webb, S. R. and Sprent, J. (1990) Induction of neonatal tolerance to Mlsa antigens by CD8+T cells. Science 248, 1643–1646.PubMedCrossRefGoogle Scholar
  15. 15.
    Winslow, G. M., Scherer, M. T., Kappler, J. W., and Marrack, P. (1992) Detection and biochemical characterization of the mouse mammary tumor virus 7 superantigen (Mls-1a). Cell 71, 719–730.PubMedCrossRefGoogle Scholar
  16. 16.
    Winslow, G. M., Marrack, P., and Kappler, J. W. (1994) Processing and Major Histocompatibility Complex binding of the MTV7 superantigen. Immunity 1, 23–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Krummenacher, C. and Diggelmann, H. (1993) The mouse mammary tumor virus long terminal repeat encodes a 47 kDa glycoprotein with a short half-life in mammalian cells. Mol. Immunol. 30, 1151–1157.PubMedCrossRefGoogle Scholar
  18. 18.
    McMahon, C. W., Bogatzki, L. Y., and Pullen, A. M. (1997) Mouse mammary tumor virus superantigens require N-linked glycosylation for effective presentation to T cells. Virology 228, 161–170.PubMedCrossRefGoogle Scholar
  19. 19.
    Subramanyam, M., McLellan, B., Labrecque, N., Sekaly, R., and Huber, B. T. (1993) Presentation of the Mls-1 superantigen by human HLAclass II molecules tomurineT cells.J. Immunol. 151, 2538–2545.Google Scholar
  20. 20.
    Mishell, R. I. and Dutton, R. W. (1967) Immunization of dissociated spleen cell cultures from normal mice. J. Exp. Med. 126, 423–442.PubMedCrossRefGoogle Scholar
  21. 21.
    Mohan, N., Mottershead, D., Subramanyam, M., Beutner, U. and Huber, B. T. (1993) Production and characterization of an Mls-1-specific monoclonal antibody. J. Exp. Med. 177, 351–358.PubMedCrossRefGoogle Scholar
  22. 22.
    Gollub, K. J. and Palmer, E. (1991) The physiologic expression of two superantigens in the BDF1 mouse. J. Immunol. 147, 2447–2454.Google Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Gary Winslow
    • 1
    • 2
  1. 1.New York State Department of HealthWadsworth CenterAlbany
  2. 2.Department of Biomedical SciencesState University of New York at AlbanyAlbany

Personalised recommendations