Skip to main content

Osteocyte Isolation and Culture

  • Protocol
Bone Research Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 80))

Abstract

Osteocytes are the most abundant cells in bone. Although individual osteocytes are buried in an isolated position within bone matrix, they remain in contact with one another and with cells on the bone surface by long cell processes that run via small channels, termed canaliculi, through the bone matrix. Where the cell processes of two osteocytes meet in a shared canaliculus, gap junctions provide intracellular contact (1). For a long time osteocytes were outside the mainstream of bone research. Increasing interest in the mechanoregulation of bone has changed this, and today there is a general consensus that osteocytes play a pivotal role as mechanosensors and effectors in bone (2). Whether osteocytes have other functions remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doty, S. B. (1981) Morphological evidence of gap junctions between bone cells. Calcif. Tissue Int. 33, 509–512.

    Article  PubMed  CAS  Google Scholar 

  2. Nijweide, P. J., Burger, E. H., Klein-Nulend, J., and van der Plas, A. (1996) The osteocyte, in Principles of Bone Biology (Bilezikian, J. P., Raisz, L. G., and Rodan, G. A., eds.), Academic Press, San Diego, pp. 115–126.

    Google Scholar 

  3. Van der Plas, A., Aarden, E. M., Feijen, J. H. M., et al. (1994) Characteristics and properties of osteocytes in culture. J. Bone Miner. Res. 9, 1697–1704.

    Article  PubMed  Google Scholar 

  4. Hefley, T. J. (1987) Utilization of FPLC-purified bacterial collagenase for the isolation of cells from bone. J. Bone Miner. Res. 2, 505–516.

    Article  PubMed  CAS  Google Scholar 

  5. Nijweide, P. J. and Mulder, R. J. P. (1986) Identification of osteocytes in osteoblast-like cell cultures using a monoclonal antibody specifically directed against osteocytes. Histochemistry 84, 342–347.

    Article  PubMed  CAS  Google Scholar 

  6. Van der Plas, A. and Nijweide, P. J. (1992) Isolation and purification of osteocytes. J. Bone Miner. Res. 7, 389–396.

    Article  PubMed  Google Scholar 

  7. Mikuni-Takagaki, Y., Kakai, Y., Satoyoshi, M., et al. (1995) Matrix mineralization and the differentiation of osteocyte-like cells in culture. J. Bone Miner. Res. 10, 231–242.

    Article  PubMed  CAS  Google Scholar 

  8. Nijweide, P. J., van der Plas, A., and Olthof, A. A. (1988) Osteoblastic differentiation, in Cell and Molecular Biology of Vertebrate Hard Tissues, Ciba Foundation Symposium 136 (Evered, D. and Harnett, S., eds.), John Wiley & Sons, Chichester, UK, pp. 61–77.

    Google Scholar 

  9. Bruder, S. P. and Caplan, A. I. (1990) Terminal differentiation of osteogenic cells in the embryonic chick tibia is revealed by a monoclonal antibody against osteocytes. Bone 11, 189–198.

    Article  PubMed  CAS  Google Scholar 

  10. Westbroek, I., De Rooij, K. E., and Nijweide, P. J. (2002) Osteocyte-specific monoclonal antibody MAb OB7.3 is directed against Phex protein. J. Bone Miner. Res. 17, 845–853.

    Article  PubMed  CAS  Google Scholar 

  11. Wetterwald, A., Hoffstetter, W., Cecchini, M. G., et al. (1996) Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes. Bone 18, 125–132.

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka-Kamioka, K., Kamioka, H., Ris, H., and Lim, S. S. (1998) Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J. Bone Miner. Res. 13, 1555–1568.

    Article  PubMed  CAS  Google Scholar 

  13. Aarden, E. M., Wassenaar, A. M., Alblas, M. J., and Nijweide, P. J. (1996) Immunocytochemical demonstration of extracellular matrix proteins in isolated osteocytes. Histochem. Cell Biol. 106, 495–501.

    Article  PubMed  CAS  Google Scholar 

  14. Nakamura, H. and Ozawa, H. (1996) Immunolocalization of CD44 and the ERM family in bone cells of mouse tibiae. J. Bone Miner. Res. 11, 1715–1722.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Nijweide, P.J., van der Plas, A., Alblas, M.J., Klein-Nulend, J. (2003). Osteocyte Isolation and Culture. In: Helfrich, M.H., Ralston, S.H. (eds) Bone Research Protocols. Methods in Molecular Medicine, vol 80. Humana Press. https://doi.org/10.1385/1-59259-366-6:41

Download citation

  • DOI: https://doi.org/10.1385/1-59259-366-6:41

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-044-1

  • Online ISBN: 978-1-59259-366-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics