Skip to main content

Bone Cell Responses to Fluid Flow

  • Protocol
Bone Research Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 80))

Abstract

The relationship between mechanical loading and bone formation has long been documented (1). However, the identity of the transductory mechanism, conveying loading signals to bone cells, remains elusive. Mechanical strain, interstitial fluid flow, and streaming potentials are all likely candidates but the separate investigation of these factors has proven difficult. Studies in our laboratory and others have shown fluid shear stress to be influential in bone modeling and remodeling (24). The characteristics of the flow causing this bone formation and probable inhibition of resorption have been more difficult to determine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolff, J. (1892) Das Gesetz der Transformation der Knochen. Hirschwald, Berlin.

    Google Scholar 

  2. Reich, K. M., Gay, C. V., and Frangos, J. A. (1990) Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell. Physiol. 143, 100–104.

    Article  PubMed  CAS  Google Scholar 

  3. Smalt, R., Mitchell, F. T., Howard, R. L., and Chambers, T. J. (1997) Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. Am. J. Physiol. 273, E751–E758.

    PubMed  CAS  Google Scholar 

  4. Bergula, A. P., Huang, W., and Frangos, J. A. (1999) Femoral vein ligation increases bone mass in the hindlimb suspended rat. Bone 24, 171–177.

    Article  PubMed  CAS  Google Scholar 

  5. McAllister, T. N. and Frangos, J. A. (1998) Nitric oxide and mechanical factors: fluid shear stress, in Nitric Oxide in Arthritis and Osteoporosis (Hukkanen, M. V. J., Polak, J. M., and Hughes, S. P. F., eds.), Cambridge University Press, Cambridge, UK, pp. 141–150.

    Google Scholar 

  6. Hillsley, M. V. and Frangos, J. A. (1994) Review: bone tissue engineering: The role of interstitial fluid flow. Biotechnol. Bioeng. 43, 573–581.

    Article  PubMed  CAS  Google Scholar 

  7. McAllister, T. N. and Frangos, J. A. (1999) Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J. Bone Miner. Res. 14, 930–936.

    Article  PubMed  CAS  Google Scholar 

  8. Jiang, G. L., White, C. R., Stevens, H. Y., and Frangos, J. A. (2002) Temporal gradients in shear stimulate oseoblastic proliferation via ERK1/2 and retinoblastoma protein. Am. J. Physiol. Endocrinol. Metab. 283, E383–E389.

    PubMed  CAS  Google Scholar 

  9. Bao, X., Clark, C. B., and Frangos, J. A. (2000) Temporal gradient in shear-induced signaling pathway: involvement of MAP kinase, c-fos, and connexin 43. Am. J. Physiol. Heart Circulat. Physiol. 278, H1598–H1605.

    CAS  Google Scholar 

  10. Reich, K. M. and Frangos, J. A. (1991) Effect of flow on prostaglandin E2 and inositol trisphosphate levels in osteoblasts. Am. J. Physiol. 261, C428–C432.

    PubMed  CAS  Google Scholar 

  11. Sakai, K., Mohtai, M., and Iwamoto, Y. (1998) Fluid shear stress increases transforming growth factor beta 1 expression in human osteoblast-like cells: modulation by cation channel blockades. Calcif. Tissue Int. 63, 515–520.

    Article  PubMed  CAS  Google Scholar 

  12. Pavalko, F. M., Chen, N. X., Turner, C. H., et al. (1998) Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol. 275, C1591–C1601.

    PubMed  CAS  Google Scholar 

  13. Hung, C. T., Pollack, S. R., Reilly, T. M., and Brighton, C. T. (1995) Real-time calcium response of cultured bone cells to fluid flow. Clin. Orthopaed. Relat. Res. 313, 256–259.

    Google Scholar 

  14. McDonald, F., Somasundaram, B., McCann, T. J., Mason, W. T., and Meikle, M. C. (1996) Calcium waves in fluid flow stimulated osteoblasts are G protein mediated. Arch. Biochem. Biophys. 326, 31–38.

    Article  PubMed  CAS  Google Scholar 

  15. Klein-Nulend, J., van der Plas, A., Semeins, C. M., et al. (1995) Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 9, 441–445.

    PubMed  CAS  Google Scholar 

  16. Johnson, D. L., McAllister, T. N., and Frangos, J. A. (1996) Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am. J. Physiol. 271, E205–E208.

    PubMed  CAS  Google Scholar 

  17. Klein-Nulend, J., Semeins, C. M., Ajubi, N. E., Nijweide, P. J., and Burger, E. H. (1995) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation. Biochem. Biophys. Res. Commun. 217, 640–648.

    Article  PubMed  CAS  Google Scholar 

  18. McAllister, T. N., Du, T., and Frangos, J. A. (2000) Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells. Biochem. Biophys. Res. Commun. 270, 643–8.

    Article  PubMed  CAS  Google Scholar 

  19. Kasten, T. P., Collin Osdoby, P., Patel, N., et al. (1994) Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase. Proc. Natl. Acad. Sci. USA 91, 3569–3573.

    Article  PubMed  CAS  Google Scholar 

  20. Reich, K. M., McAllister, T. N., Gudi, S., and Frangos, J. A. (1997) Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts. Endocrinology 138, 1014–1018.

    Article  PubMed  CAS  Google Scholar 

  21. Ecarot-Charrier, B., Glorieux, F. H., van der Rest, M., and Pereira, G. (1983) Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J. Cell Biol. 96, 639–643.

    Article  PubMed  CAS  Google Scholar 

  22. Jones, S. J. and Boyde, A. (1977) The migration of osteoblasts. Cell Tissue Res. 184, 179–193.

    Article  PubMed  CAS  Google Scholar 

  23. Frangos, J. A., McIntire, L. V., and Eskin, S. G. (1988) Shear stress induced stimulation of mammalian cell metabolism. Biotechnol. Bioeng. 32, 1053–1060.

    Article  PubMed  CAS  Google Scholar 

  24. Bakker, A. D., Soejima, K., Klein-Nulend, J., and Burger, E. H. (2001) The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J. Biomech. 34, 671–677.

    Article  PubMed  CAS  Google Scholar 

  25. Helfrich, M. H., Evans, D. E., Grabowski, P. S., Pollock, J. S., Ohshima, H., and Ralston, S. H. (1997) Expression of nitric oxide synthase isoforms in bone and bone cell cultures. J. Bone Miner. Res. 12, 1108–1115.

    Article  PubMed  CAS  Google Scholar 

  26. Weinbaum, S., Cowin, S. C., and Zeng, Y. (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27, 339–360.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Stevens, H.Y., Frangos, J.A. (2003). Bone Cell Responses to Fluid Flow. In: Helfrich, M.H., Ralston, S.H. (eds) Bone Research Protocols. Methods in Molecular Medicine, vol 80. Humana Press. https://doi.org/10.1385/1-59259-366-6:381

Download citation

  • DOI: https://doi.org/10.1385/1-59259-366-6:381

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-044-1

  • Online ISBN: 978-1-59259-366-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics