Skip to main content

Generating Murine Osteoclasts from Bone Marrow

  • Protocol
Bone Research Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 80))

Abstract

Osteoclasts, the multinucleated giant cells that resorb bone, originate from hemopoietic cells of the monocyte-macrophage lineage (1,2). We have developed a mouse bone marrow culture system, in which osteoclasts are formed in response to several bone-resorbing factors such as 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2D3], parathyroid hormone (PTH), prostaglandin E2 (PGE2) and interleukin-11 (IL-11) (2,3). We also developed a mouse coculture system of primary osteoblasts and hemopoietic cells to examine the regulatory mechanism of osteoclastogenesis (2,4). A series of experiments using the coculture system established the concept that osteoblasts/stromal cells have a key role in regulating osteoclast differentiation (2). Macrophage colony-stimulating factor (M-CSF, also called CSF-1) produced by osteoblasts/stromal cells was shown to be an essential factor for differentiation of osteoclasts from osteoclast progenitors (2,5). Recently, receptor activator of nuclear factor κB ligand (RANKL) was identified as another essential factor for osteoclastogenesis, which is expressed by osteoblasts/stromal cells in response to several bone-resorbing factors (6,7; see Note 1). Osteoclast precursors that possess RANK, a tumor necrosis factort (TNF) receptor family member, recognize RANKL through cell-cell interaction with osteoblasts/stromal cells, and differentiate into osteoclasts in the presence of M-CSF. Recent progress of molecular technology allows us to introduce foreign genes into mature osteoclasts for modulating their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roodman, G. D. (1996) Advances in bone biology: the osteoclast. Endocr. Rev. 17, 308–332.

    PubMed  CAS  Google Scholar 

  2. Suda, T., Takahashi, N., and Martin, T. J. (1992) Modulation of osteoclast differentiation. Endocr. Rev. 13, 66–80.

    PubMed  CAS  Google Scholar 

  3. Takahashi, N., Yamana, H., Yoshiki, S., et al. (1988) Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology 122, 1373–1382.

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi, N., Akatsu, T., Udagawa, N., et al. (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology 123, 2600–2602.

    Article  PubMed  CAS  Google Scholar 

  5. Yoshida, H., Hayashi, S., Kunisada, T., et al. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444.

    Article  PubMed  CAS  Google Scholar 

  6. Yasuda, H,, Shima, N., Nakagawa, N., et al. (1999) A novel molecular mechanism modulating osteoclast differentiation and function. Bone 25, 109–113.

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi, N., Udagawa, N., and Suda, T. (1999) A new member of TNF ligand family, ODF/RANKL/TRANCE/OPGL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun. 256, 449–455.

    Article  PubMed  CAS  Google Scholar 

  8. Tanaka, S., Takahashi, T., Takayanagi, H., et al. (1998) Modulation of osteoclast function by adenovirus vector-induced epidermal growth factor receptor. J. Bone Miner. Res. 13, 1714–1720.

    Article  PubMed  CAS  Google Scholar 

  9. Kobayashi, K., Takahashi, N., Jimi, E., et al. (2000) Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 191, 275–286.

    Article  PubMed  CAS  Google Scholar 

  10. Akatsu, T., Tamura, T., Takahashi, N., et al. (1992) Preparation and characterization of a mouse multinucleated cell population. J. Bone Miner. Res. 7, 1297–1306.

    Article  PubMed  CAS  Google Scholar 

  11. Suda, T., Nakamura, I., Jimi, E., and Takahashi, N. (1997) Regulation of osteoclast function. J. Bone Miner. Res. 12, 869–879.

    Article  PubMed  CAS  Google Scholar 

  12. Jimi, E., Ikebe, T., Takahashi, N., Hirata, N., Suda, T., and Koga, T. (1996) Interleukin-1 β activates an NF-κB-like factor in osteoclast-like cells. J. Biol. Chem. 271, 4605–4608.

    Article  PubMed  CAS  Google Scholar 

  13. Suda, T., Jimi, E., Nakamura, I., and Takahashi, N. (1997) Role of 1α,25-dihydroxyvitamin D3 in osteoclast differentiation and function. Methods Enzymol. 282, 223–235.

    Article  PubMed  CAS  Google Scholar 

  14. Nakamura, I., Takahashi, N, Sasaki, T., et al. (1995) Wortmannin, a specific inhibitor of phosphatidylinositol-3 kinase, blocks osteoclastic bone resorption. FEBS Lett. 361, 79–84.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang, D., Udagawa, N., Nakamura, I., et al. (1995) The small GTP-binding protein, rho p21, is involved in bone resorption by regulating cytoskeletal organization in osteoclasts. J. Cell Sci. 108, 2285–2292.

    PubMed  CAS  Google Scholar 

  16. Tanaka, S., Takahashi, N., Udagawa, N., et al. (1992) Osteoclasts express high levels of p60c-src, preferentially on ruffled border membranes. FEBS Lett. 313 85–89.

    Article  PubMed  CAS  Google Scholar 

  17. Jimi, E., Nakamura, I., Duong, L. T., et al. (1999) Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. Exp. Cell Res. 247, 84–93.

    Article  PubMed  CAS  Google Scholar 

  18. Jimi, E., Akiyama, S., Tsurukai, T., et al. (1999) Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J. Immunol. 163, 434–442.

    PubMed  CAS  Google Scholar 

  19. Wesolowski, G., Duong, L. T., Lakkakorpi, P. T., et al. (1995) Isolation and characterization of highly enriched, prefusion mouse osteoclastic cells. Exp. Cell Res. 219, 679–686.

    Article  PubMed  CAS  Google Scholar 

  20. Takahashi, N., Akatsu, T., Sasaki, T., et al. (1988) Induction of calcitonin receptors by 1α,25-dihydroxyvitamin D3 in osteoclast-like multinucleated cells formed from mouse bone marrow cells. Endocrinology 123, 1504–1510.

    Article  PubMed  CAS  Google Scholar 

  21. Tamura, T., Takahashi, N., Akatsu, T., et al. (1993) A new resorption assay with mouse osteoclast-like multinucleated cells formed in vitro. J. Bone Miner. Res. 8, 953–960.

    Article  PubMed  CAS  Google Scholar 

  22. Miyake, S., Makimura, M., Kanegae, Y., et al. (1996) Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc. Natl. Acad. Sci. USA 93, 1320–1324.

    Article  PubMed  CAS  Google Scholar 

  23. Simonet, W. S., Lacey, D. L., Dunstan, C. R., et al. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319.

    Article  PubMed  CAS  Google Scholar 

  24. Tsuda, E., Goto, M., Mochizuki, S., et al. (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Biophys. Res. Commun. 234, 137–142.

    Article  PubMed  CAS  Google Scholar 

  25. Yasuda, H., Shima, N., Nakagawa, N., et al. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597–3602.

    Article  PubMed  CAS  Google Scholar 

  26. Lacey, D. L., Timms, E., Tan, H. L., et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176.

    Article  PubMed  CAS  Google Scholar 

  27. Wong, B. R., Rho, J., Arron, J., et al. (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272, 25190–25194.

    Article  PubMed  CAS  Google Scholar 

  28. Anderson, D. M., Maraskovsky, E., Billingsley, W. L., et al. (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179.

    Article  PubMed  CAS  Google Scholar 

  29. The American Society for Bone and Mineral Research President’s Committee on Nomenclature (2000) Proposed standard nomenclature for new tumor necrosis factor family members involved in the regulation of bone resorption. J. Bone Miner. Res. 15, 2293–2296.

    Google Scholar 

  30. Udagawa, N., Takahashi, N., Akatsu, T., et al. (1989) The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology 125, 1805–1813.

    Article  PubMed  CAS  Google Scholar 

  31. Quinn, J. M., Morfis, M., Lam, M. H., et al. (1999) Calcitonin receptor antibodies in the identification of osteoclasts. Bone 25, 1–8.

    Article  PubMed  CAS  Google Scholar 

  32. Miyazaki, T., Takayanagi, H., Isshiki, M., et al. (2000) In vitro and in vivo suppression of osteoclast function by adenovirus vector-induced csk gene. J. Bone Miner. Res. 15, 41–51.

    Article  PubMed  CAS  Google Scholar 

  33. Miyazaki, T., Katagiri, H., Kanegae, Y., et al. (2000) Reciprocal role of ERK and NF-κB pathways in survival and activation of osteoclasts. J. Cell Biol. 148, 333–342.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Takahashi, N., Udagawa, N., Tanaka, S., Suda, T. (2003). Generating Murine Osteoclasts from Bone Marrow. In: Helfrich, M.H., Ralston, S.H. (eds) Bone Research Protocols. Methods in Molecular Medicine, vol 80. Humana Press. https://doi.org/10.1385/1-59259-366-6:129

Download citation

  • DOI: https://doi.org/10.1385/1-59259-366-6:129

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-044-1

  • Online ISBN: 978-1-59259-366-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics