Methods for Analyzing Bone Cell Responses to Mechanical Loading Using In Vitro Monolayer and Organ Culture Models

  • Andrew A. Pitsillides
  • Victoria Das-Gupta
  • Dominic Simon
  • Simon C. F. Rawlinson
Part of the Methods in Molecular Medicine book series (MIMM, volume 80)


As bone’s primary function is mechanical, it is not surprising that almost all studies using intact bone concern its morphology. Such histomorphometric studies have been used to provide insights into how bone responds, as an organ, to mechanical loading. However, despite the fact that the cellular basis for “sensing” mechanical stimuli or “communicating” their influence to coordinate any loading-induced changes that they engender is not known, studies in intact bone are rarely used to establish the direct links with any changes in bone cell biochemistry. It is also evident that most studies aimed at defining these mechanisms currently use bone cells grown in vitro, and that this has produced rapid advances in our understanding of the factors that might be involved in regulating bone cell responses to loading-induced stimuli. It is clear that such in vitro studies facilitate the final mechanistic deciphering and constitute a useful initial approach. However, it is also evident that they generally take little regard of the influence that might be provided by cell-cell and cell-matrix interactions within a bone’s complex environment and architecture (1). It is therefore imperative to attempt to bridge the gap between the cell biology of bone’s response to loading on the one hand and the morphological approach to this same problem on the other.


Bone Cell Mechanical Stimulus Mechanical Strain Uniaxial Strain Streaming Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bradbeer, J. N. (1992). Cell biology of bone remodelling, in Recent Advances in Endocrinology and Metabolism (Edwards, C. R. E. and Lincoln, D. W., eds.), Churchhill Livingstone, pp. 95–113.Google Scholar
  2. 2.
    Bonassar, L. J., Grodzinsky, A. J., Srinivasan, A., Davila, S. G., and Trippel, S. B. (2000) Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage. Arch. Biochem. Biophys. 379, 57–63.PubMedCrossRefGoogle Scholar
  3. 3.
    Bayliss, M. T., Howat, S., Davidson, C., and Dudhia, J. (2000) The organization of aggrecan in human articular cartilage. Evidence for age-related changes in the rate of aggregation of newly synthesized molecules. J. Biol. Chem. 275, 6321–6327.PubMedCrossRefGoogle Scholar
  4. 4.
    Packer, D. L., Dombi, G. W., Yu, P. Y., Zidel, P., and Sullivan, W. G. (1994) An in vitro model of fibroblast activity and adhesion formation during flexor tendon healing. J. Hand Surg. [Am.] 19, 769–776.CrossRefGoogle Scholar
  5. 5.
    Zaman, G., Pitsillides, A. A., Rawlinson, S. C. F., et al. (1999) Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J. Bone Miner. Res. 14, 1123–1131.PubMedCrossRefGoogle Scholar
  6. 6.
    Rawlinson, S. C. F., Mosley, J. R., Suswillo, R. F., Pitsillides, A. A., and Lanyon, L. E. (1995) Calvarial and limb bone cells in organ and monolayer culture do not show the same early responses to dynamic mechanical strain. J. Bone Miner. Res. 10, 1225–1232.PubMedCrossRefGoogle Scholar
  7. 7.
    Currey, J. D. (1979) Mechanical properties of bone tissues with greatly differing functions. J. Biomech 12, 313–319.PubMedCrossRefGoogle Scholar
  8. 8.
    Riggs, C. M., Lanyon, L. E., and Boyde, A. (1993) Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius. Anat. Embryol. (Berl.) 187, 231–238.Google Scholar
  9. 9.
    Rubin, C. T. and Lanyon, L. E. (1984) Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. Am. 66, 397–402.PubMedGoogle Scholar
  10. 10.
    Turner, C. H., Akhter, M. P., Raab, D. M., Kimmel, D. B., and Recker, R. R. (1991) A noninvasive, in vivo model for studying strain adaptive bone modeling. Bone 12, 73–79.PubMedCrossRefGoogle Scholar
  11. 11.
    Mosley, J. R., March, B. M., Lynch, J., and Lanyon, L. E. (1997) Strain magnitude related changes in whole bone architecture in growing rats. Bone 20, 191–198.PubMedCrossRefGoogle Scholar
  12. 12.
    Cheng, M. Z., Zaman, G., and Lanyon, L. E. (1994) Estrogen enhances the stimulation of bone collagen synthesis by loading and exogenous prostacyclin, but not prostaglandin E2, in organ cultures of rat ulnae. J. Bone Miner. Res. 9, 805–816.PubMedCrossRefGoogle Scholar
  13. 13.
    Reich, K. M., Gay, C. V., and Frangos, J. A. (1990) Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell Physiol. 143, 100–104.PubMedCrossRefGoogle Scholar
  14. 14.
    Reich, K. M. and Frangos, J. A. (1993) Protein kinase C mediates flow-induced prostaglandin E2 production in osteoblasts. Calcif. Tissue Int. 52, 62–66.PubMedCrossRefGoogle Scholar
  15. 15.
    MacGinitie, L. A., Wu, D. D., and Cochran, G. V. (1993) Streaming potentials in healing, remodeling, and intact cortical bone. J. Bone Miner. Res. 8, 1323–1335.PubMedCrossRefGoogle Scholar
  16. 16.
    Ruoslahti, E. and Pierschbacher, M. D. (1987) New perspectives in cell adhesion: RGD and integrins. Science 238, 491–497.PubMedCrossRefGoogle Scholar
  17. 17.
    Oldberg, A., Franzen, A., and Heinegard, D. (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc. Natl. Acad. Sci. USA 83, 8819–8823.PubMedCrossRefGoogle Scholar
  18. 18.
    Oldberg, A., Franzen, A., and Heinegard, D. (1988) The primary structure of a cell-binding bone sialoprotein. J. Biol. Chem. 263, 19430–19432.PubMedGoogle Scholar
  19. 19.
    Zimmerman, D., Jin, F., Leboy, P., Hardy, S., and Damsky, C. (2000) Impaired bone formation in transgenic mice resulting from altered integrin function in osteoblasts. Dev. Biol. 220, 2–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Gronthos, S., Stewart, K., Graves, S. E., Hay, S., and Simmons, P. J. (1997) Integrin expression and function on human osteoblast-like cells. J. Bone Miner. Res. 12, 1189–1197.PubMedCrossRefGoogle Scholar
  21. 21.
    Cowles, E. A., Brailey, L. L., and Gronowicz, G. A. (2000) Integrin-mediated signaling regulates AP-1 transcription factors and proliferation in osteoblasts. J. Biomed. Mater. Res. 52, 725–737.PubMedCrossRefGoogle Scholar
  22. 22.
    Flores, M. E., Heinegard, D., Reinholt, F. P., and Andersson, G. (1996) Bone sialoprotein coated on glass and plastic surfaces is recognized by different beta 3 integrins. Exp. Cell Res. 227, 40–46.PubMedCrossRefGoogle Scholar
  23. 23.
    Collin-Osdoby, P., Nickols, G. A., and Osdoby, P. (1995) Bone cell function, regulation, and communication: a role for nitric oxide. J. Cell Biochem. 57, 399–408.PubMedCrossRefGoogle Scholar
  24. 24.
    Doty, S. B. (1981) Morphological evidence of gap junctions between bone cells. Calcif. Tissue Int. 33, 509–512.PubMedCrossRefGoogle Scholar
  25. 25.
    Schiller, P. C., Ippolito, G., Balkan, W., Roos, B. A., and Howard, G. A. (2001) Gap-junctional communication is required for the maturation process of osteoblastic cells in culture. Bone 28, 362–369.PubMedCrossRefGoogle Scholar
  26. 26.
    Aarden, E. M., Nijweide, P. J., van der Plas, A., et al. (1996) Adhesive properties of isolated chick osteocytes in vitro. Bone 18, 305–313.PubMedCrossRefGoogle Scholar
  27. 27.
    Garcia-Cardena, G., Fan, R., Shah, V., et al. (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392, 821–824.PubMedCrossRefGoogle Scholar
  28. 28.
    Das, P., Schurman, D. J., and Smith, R. L. (1997) Nitric oxide and G proteins mediate the response of bovine articular chondrocytes to fluid-induced shear. J. Orthop. Res. 15, 87–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Binderman, I., Shimshoni, Z., and Somjen, D. (1984) Biochemical pathways involved in the translation of physical stimulus into biological message. Calcif. Tissue Int. 36 (Suppl. 10, S82–S85.PubMedCrossRefGoogle Scholar
  30. 30.
    Hasegawa, S., Sato, S., Saito, S., Suzuki, Y., and Brunette, D. M. (1985) Mechanical stretching increases the number of cultured bone cells synthesizing DNA and alters their pattern of protein synthesis. Calcif. Tissue Int. 37, 431–436.PubMedCrossRefGoogle Scholar
  31. 31.
    Basdra, E. K., Kohl, A., and Komposch, G. (1996) Mechanical stretching of periodontal ligament fibroblasts—a study on cytoskeletal involvement. J. Orofac. Orthop. 57, 24–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Vandenburgh, H. H. (1988) A computerized mechanical cell stimulator for tissue culture: effects on skeletal muscle organogenesis. In Vitro Cell Dev. Biol. 24, 609–619.PubMedCrossRefGoogle Scholar
  33. 33.
    Soma, S., Matsumoto, S., and Yamamoto, T. (1997) Enhancement by conditioned medium of stretched calvarial bone cells of the osteoclast-like cell formation induced by parathyroid hormone in mouse bone marrow cultures. Arch. Oral Biol. 42, 205–211.PubMedCrossRefGoogle Scholar
  34. 34.
    Andersen, K. L. and Norton, L. A. (1991) A device for the application of known simulated orthodontic forces to human cells in vitro. J. Biomech. 24, 649–654.PubMedCrossRefGoogle Scholar
  35. 35.
    Matsuo, T., Uchida, H., and Matsuo, N. (1996) Bovine and porcine trabecular cells produce prostaglandin F2 alpha in response to cyclic mechanical stretching. Jpn. J. Ophthalmol. 40, 289–296.PubMedGoogle Scholar
  36. 36.
    Banes, A. J., Gilbert, J., Taylor, D., and Monbureau, O. (1985) A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro. J. Cell Sci. 75, 35–42.PubMedGoogle Scholar
  37. 37.
    Winston, F. K., Macarak, E. J., Gorfien, S. F., and Thibault, L. E. (1989) A system to reproduce and quantify the biomechanical environment of the cell. J. Appl. Physiol. 67, 397–405.PubMedGoogle Scholar
  38. 38.
    Jones, D. B., Leivseth, G., Sawada, Y., van der Sloten, J., and Bingmann, D. (1994). Application of homogenous, Defined strains to cell cultures, in Biomechanics and Cells (Lyall, R. and El-Haj, A. J., eds.), Cambridge University Press, Cambridge, UK, pp. 197–219.CrossRefGoogle Scholar
  39. 39.
    Brighton, C. T., Strafford, B., Gross, S. B., Leatherwood, D. F., Williams, J. L., and Pollack, S. R. (1991) The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain. J. Bone Joint Surg. Am. 73, 320–331.PubMedGoogle Scholar
  40. 40.
    Fermor, B., Gundle, R., Evans, M., Emerton, M., Pocock, A., and Murray, D. (1998) Primary human osteoblast proliferation and prostaglandin E2 release in response to mechanical strain in vitro. Bone 22, 637–643.PubMedCrossRefGoogle Scholar
  41. 41.
    Murray, D. W. and Rushton, N. (1990) The effect of strain on bone cell prostaglandin E2 release: a new experimental method. Calcif. Tissue Int. 47, 35–39.PubMedCrossRefGoogle Scholar
  42. 42.
    Grabner, B., Varga, F., Glantschnig, H., et al. (1999) A new in vitro system for applying uniaxial strain on cell cultures. Calcif. Tissue Int. 64 (Suppl. 1), S114.Google Scholar
  43. 43.
    Jones, D. B., Nolte, H., Scholubbers, J. G., Turner, E., and Veltel, D. (1991) Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials 12, 101–110.PubMedCrossRefGoogle Scholar
  44. 44.
    Pitsillides, A. A., Rawlinson, S. C. F., Suswillo, R. F., Bourrin, S., Zaman, G., and Lanyon, L. E. (1995) Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J. 9, 1614–1622.PubMedGoogle Scholar
  45. 45.
    Jessop, H. L., Sjoberg, M., Cheng, M. Z., Zaman, G., Wheeler-Jones, C. P., and Lanyon, L. E. (2001) Mechanical strain and estrogen activate estrogen receptor alpha in bone cells. J. Bone Miner. Res. 16, 1045–1055.PubMedCrossRefGoogle Scholar
  46. 46.
    Zaman, G., Cheng, M. Z., Jessop, H. L., White, R., and Lanyon, L. E. (2000) Mechanical strain activates estrogen response elements in bone cells. Bone 27, 233–239.PubMedCrossRefGoogle Scholar
  47. 47.
    Cheng, M. Z., Zaman, G., Rawlinson, S. C. F., Mohan, S., Baylink, D. J., and Lanyon, L. E. (1999) Mechanical strain stimulates ROS cell proliferation through IGF-II and estrogen through IGF-I. J. Bone Miner. Res. 14, 1742–1750.PubMedCrossRefGoogle Scholar
  48. 48.
    Zaman, G., Suswillo, R. F., Cheng, M. Z., Tavares, I. A., and Lanyon, L. E. (1997) Early responses to dynamic strain change and prostaglandins in bone-derived cells in culture. J. Bone Miner. Res. 12, 769–777.PubMedCrossRefGoogle Scholar
  49. 49.
    Tanaka, S. M. (1999) A new mechanical stimulator for cultured bone cells using piezoelectric actuator. J. Biomech. 32, 427–430.PubMedCrossRefGoogle Scholar
  50. 50.
    Lanyon, L. E. and Rubin, C. T. (1984) Static vs dynamic loads as an influence on bone remodelling. J. Biomech. 17, 897–905.PubMedCrossRefGoogle Scholar
  51. 51.
    Rubin, C. T. and Lanyon, L. E. (1985) Regulation of bone mass by mechanical strain magnitude. Calcif. Tissue Int. 37, 411–417.PubMedCrossRefGoogle Scholar
  52. 52.
    Smith, E. L., Martens, F., Koller, K., Clark, W., and Jones, D. B. (2000) The effects of 20 days of mechanical loading plus PTH on the E-modulus of cow trabecular bone. J. Bone Miner. Res. 15 (Suppl. 1), S247.Google Scholar
  53. 53.
    Walker, L. M., Preston, M. R., Magnay, J. L., Thomas, P. B., and El-Haj, A. J. (2001) Nicotinic regulation of c-fos and osteopontin expression in human-derived osteoblast-like cells and human trabecular bone organ culture. Bone 28, 603–608.PubMedCrossRefGoogle Scholar
  54. 54.
    Cheng, M. Z., Zaman, G., Rawlinson, S. C. F., Pitsillides, A. A., Suswillo, R. F., and Lanyon, L. E. (1997) Enhancement by sex hormones of the osteoregulatory effects of mechanical loading and prostaglandins in explants of rat ulnae. J. Bone Miner. Res. 12, 1424–1430.PubMedCrossRefGoogle Scholar
  55. 55.
    Cheng, M. Z., Zaman, G., Rawlinson, S. C. F., Suswillo, R. F., and Lanyon, L. E. (1996) Mechanical loading and sex hormone interactions in organ cultures of rat ulna. J. Bone Miner. Res. 11, 502–511.PubMedCrossRefGoogle Scholar
  56. 56.
    Rawlinson, S. C. F., Pitsillides, A. A., and Lanyon, L. E. (1996) Involvement of different ion channels in osteoblasts’ and osteocytes’ early responses to mechanical strain. Bone 19, 609–614.PubMedCrossRefGoogle Scholar
  57. 57.
    Rawlinson, S. C. F., Wheeler-Jones, C. P., and Lanyon, L. E. (2000) Arachidonic acid for loading induced prostacyclin and prostaglandin E(2) trelease from osteoblasts and osteocytes is derived from the activities of different forms of phospholipase A(2). Bone 27, 241–247.PubMedCrossRefGoogle Scholar
  58. 58.
    Pitsillides, A. A., Rawlinson, S. C. F., Mosley, J. R., and Lanyon, L. E. (1999) Bone’s early responses to mechanical loading differ in distinct genetic strains of chick: selection for enhanced growth reduces skeletal adaptability. J. Bone Miner. Res. 14, 980–987.PubMedCrossRefGoogle Scholar
  59. 59.
    Dallas, S. L., Zaman, G., Pead, M. J., and Lanyon, L. E. (1993) Early strain-related changes in cultured embryonic chick tibiotarsi parallel those associated with adaptive modeling in vivo. J. Bone Miner. Res. 8, 251–259.PubMedCrossRefGoogle Scholar
  60. 60.
    Zaman, G., Dallas, S. L., and Lanyon, L. E. (1992) Cultured embryonic bone shafts show osteogenic responses to mechanical loading. Calcif. Tissue Int. 51, 132–136.PubMedCrossRefGoogle Scholar
  61. 61.
  62. 62.
    Jones, D. B. and Scholubbers, J. G. (1987) Evidence that phospholipase C mediates the mechanical stress effect in bone. Calcif. Tissue Int. 41, 4.CrossRefGoogle Scholar
  63. 63.
    El-Haj, A. J., Minter, S. L., Rawlinson, S. C. F., Suswillo, R. F. L., and Lanyon, L. E. (1990) Cellular responses to mechanical loading in vitro. J. Bone Miner. Res. 5, 923–932.PubMedCrossRefGoogle Scholar
  64. 64.
    Rawlinson, S. C. F., El-Haj, A. J., Minter, S. L., Tavares, I. A., Bennett, A., and Lanyon, L. E. (1991) Loading-related increases in prostaglandin production in cores of adult canine cancellous bone in vitro: a role for prostacyclin in adaptive bone remodeling? J. Bone Miner. Res. 6, 1345–1351.PubMedCrossRefGoogle Scholar
  65. 65.
    Rawlinson, S. C. F., Mohan, S., Baylink, D. J., and Lanyon, L. E. (1993) Exogenous prostacyclin, but not prostaglandin E2, produces similar responses in both G6PD activity and RNA production as mechanical loading, and increases IGF-II release, in adult cancellous bone in culture. Calcif. Tissue Int. 53, 324–329.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Andrew A. Pitsillides
    • 1
  • Victoria Das-Gupta
    • 1
  • Dominic Simon
    • 1
  • Simon C. F. Rawlinson
    • 1
  1. 1.Department of Veterinary Basic SciencesThe Royal Veterinary CollegeLondonUK

Personalised recommendations