Fluorescence Imaging of Bone-Resorbing Osteoclasts by Confocal Microscopy

  • Stephen A. Nesbitt
  • Michael A. Horton
Part of the Methods in Molecular Medicine book series (MIMM, volume 80)


Osteoclasts are large multinucleate bone cells with the capacity to degrade bone by the process of bone resorption and, thus, participate in the homeostasis of bone and calcium in the body (1). Imaging of osteoclasts can be performed by a variety of microscopy methods including light microscopy, electron microscopy, and atomic force microscopy (AFM) (2,3). These techniques, together with histochemical and immunocytochemical stains, enable the researcher to analyze the cellular structure and function of this complex cell type both in vivo within bone tissues and isolated in vitro in primary cell cultures (see Part II, Culture of Osteoclasts).


Laser Scanning Confocal Microscopy Repeat Step Giant Cell Tumor Dentine Surface Resorbing Osteoclast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Teitelbaum, S. L. (2000) Bone-resorption by osteoclasts. Science 289, 1504–1508.PubMedCrossRefGoogle Scholar
  2. 2.
    McKee, M. D. and Nanci, A. (1996) Microscopy of bone. Microsc. Res. Tech. 33, 92–239.CrossRefGoogle Scholar
  3. 3.
    Lehenkari, P., Charras, G., Nesbitt, S., and Horton, M. (2000) New technologies in scanning probe microscopy for studying molecular interactions in cells. Expert Reviews.
  4. 4.
    Reynaud, K., Nogueira, R., Kurzawa, R., and Smitz, J. (2001) Confocal microscopy: principles and applications to the field of reproductive biology. Folia Histochem. Cytobiol. 39, 75–85.PubMedGoogle Scholar
  5. 5.
    Lakkakorpi, P. T., Helfrich, M. H., Horton, M. A., and Väänänen, H. K. (1993) Spatial organization of microfilaments and vitronectin receptor, αvβ3, in osteoclasts. J. Cell Sci. 104, 663–670.PubMedGoogle Scholar
  6. 6.
    Nesbitt, S. A. and Horton, M. A. (1997). Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276, 266–269.PubMedCrossRefGoogle Scholar
  7. 7.
    Nesbitt, S., Charras, G., Lehenkari, P., and Horton, M. (2000) Three-dimensional imaging of bone-resorbing osteoclasts: spatial analysis of matrix collagens, cathepsin K, MMP-9 and TRAP by confocal microscopy. J. Bone Miner. Res. 15, 1219.Google Scholar
  8. 8.
    Baron, R., Neff, L., Brown, W., Courtoy, P., Louvard, D., and Farquhar, M. (1988) Polarised secretion of lysosomal enzymes: co-distribution of cation-independent mannose-6-phosphate receptors and lysosomal enzymes along the osteoclast exocyotic pathway. J. Cell Biol. 106, 1863–1872.PubMedCrossRefGoogle Scholar
  9. 9.
    Horton, M. A, Nesbitt S. A., Bennett, J. H., and Stenbeck, G. (2001) Integrins and other cell surface attachment molecules of bone cells, in Principles of Bone Biology, 2nd edit. (Bilezikian, J. P., Raisz, L. G., and Rodan G. A., eds.). Academic Press, San Diego.Google Scholar
  10. 10.
    Wucherpfennig, A., Li, Y., Stetler-Steveson, W., Rosenberg, A., and Stashenko P. (1994) Expression of 92 kD type IV collagenase/gelatinase B in human osteoclasts. J. Bone Miner. Res. 9, 549–556.PubMedCrossRefGoogle Scholar
  11. 11.
    Nesbitt, S. and Horton, M. (1999) Extracellular annexin II increases trafficking of matrix collagens through bone-resorbing osteoclasts to promote bone resorption. Calcif. Tissue Int. 64(Suppl. 1), S35.Google Scholar
  12. 12.
    Boyde, A., Ali, N. N., and Jones, S. J. (1984) Resorption of dentine by isolated osteoclasts in vitro. Br. Dent. J. 156, 216–220.PubMedCrossRefGoogle Scholar
  13. 13.
    Chambers, T. J., Revell, P. A., Fuller, K., and Athanasou, N. A. (1984) Resorption of bone by isolated rabbit osteoclasts. J. Cell Sci. 66, 383–399.PubMedGoogle Scholar
  14. 14.
    Arnett, T. D. and Dempster, D. W. (1986) Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology 119, 119–124.PubMedCrossRefGoogle Scholar
  15. 15.
    Horton, M. A., Rimmer, E. F., Lewis, D., Pringle, J., Fuller, K., and Chambers, T. J. (1984) Cell surface characterisation of the human osteoclast: phenotypic relationship to other bone marrow-derived cell types. J. Pathol. 144, 282.CrossRefGoogle Scholar
  16. 16.
    Atkins, G., Haynes, D., Graves, S., Evdokiou, S., Bouralexis, S., and Findlay, D. (2000) Expression of osteoclast differentiation signals by stromal elements of giant cell tumors. J. Bone Miner. Res. 15, 640–649.PubMedCrossRefGoogle Scholar
  17. 17.
    James, I., Lark, M., Zembryki, D., et al. (1999) Development and characterisation of a human in vitro resorption assay: Demonstration of utility using novel antiresorption agents. J. Bone and Miner. Res. 14, 1562–1569.CrossRefGoogle Scholar
  18. 18.
    Helfrich, M. H., Nesbitt, S. A., Dorey, E. L., and Horton, M. A. (1992). Rat osteoclasts adhere to a wide range of RGD (Arg-Gly-Asp) peptide-containing proteins, including the bone sialoproteins and fibronectin, via a β3 integrin. J. Bone Min. Res. 7, 332–343.Google Scholar
  19. 19.
    Horton, M. A. (2001) Integrin antagonists as inhibitors of bone resorption: implications for treatment. Proc. Nutr. Soc. 60, 275–281.PubMedGoogle Scholar
  20. 20.
    Helfrich, M. H., Nesbitt, S. A., Lakkakorpi, P. T., et al. (1996) β1 integrins and osteoclast function: involvement in collagen recognition and bone resorption. Bone 19, 317–328.PubMedCrossRefGoogle Scholar
  21. 21.
    Palokangas, H., Mulari, M., and Vannanen, K. (1997) Endocytotic pathway from the basal plasma membrane to the ruffled border membrane in bone-resorbing osteoclasts. J. Cell Sci. 110, 1767–1780.PubMedGoogle Scholar
  22. 22.
    Chavrier, P., Parton, R. G., Hauri, H. P., Simons, K., and Zerial, M. (1990) Localization of low molecular weight GTP binding proteins to exocytotic and endocytotic compartments. Cell 62, 317–329.PubMedCrossRefGoogle Scholar
  23. 23.
    Horton, M. A, Townsend, P. A., and Nesbitt, S. A. (1996) Cell surface attachment molecules in bone, in, Principles of Bone Biology (Bilezikian, J. P., Raisz, L. G., and Rodan, G. A., eds.), pp. 217–230. Academic Press, San Diego.Google Scholar
  24. 24.
    Guilak, F. (1994) Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections. J. Microsc. 173, 245–256.PubMedGoogle Scholar
  25. 25.
    Salo, J., Metsikkö, K., Palokangas, H., Lehenkari, P., and Väänänen, H. K. (1996) Bone-resorbing osteoclasts reveal a dynamic divison of basal plasma membrane into two different domains. J. Cell Sci. 109, 301–307.PubMedGoogle Scholar
  26. 26.
    Townsend, P. A., Vilanoova, I., Teti, A., and Horton, M. A. (1999) β1 integrin antisense oligodeoxynucleotides: utility in controlling osteoclast function. Eur. J. Cell Biol. 78, 448–496.Google Scholar
  27. 27.
    Stenbeck, G. and Horton, M. A. (2000) A new specialized cell-matrix interaction in actively resorbing osteoclasts. J. Cell Sci. 113, 1577–1587.PubMedGoogle Scholar
  28. 28.
    Walsh, C. A., Carron, J. A., and Gallagher, J. A. (1996) Isolation of osteoclasts from human giant cell tumors and long-term marrow cultures, in Methods in Molecular Medicine: Human Cell Culture Protocols (Jones, G. E., ed.), Humana Press, Totowa, NJ.Google Scholar
  29. 29.
    Nesbitt, S. and Horton, M. (1992) A nonradioactive biochemical characterisation of membrane proteins using enhanced chemiluminescence. Analyt. Biochem. 206, 267–272.PubMedCrossRefGoogle Scholar
  30. 30.
    Hnatowitch, D. J., Virzi, F., and Rusckowski, M. (1987) Investigations of avidin and biotin for imaging applications. J. Nucl. Med. 28, 1294–1302.Google Scholar
  31. 31.
    Silver, I. A., Murrills, R. J., and Etherington, D. J. (1988) Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell. Res. 175, 266–276.PubMedCrossRefGoogle Scholar
  32. 32.
    Salo, J., Lehenkari, P., Mulari, M., Metsikkö, K., and Väänänen, H. K. (1997) Removal of osteoclast bone resorption products by transcytosis. Science 276, 270–273.PubMedCrossRefGoogle Scholar
  33. 33.
    Lader, C., Scopes, J., Horton, M. and Flanagen, A. (2001) Generation of human osteoclasts in stromal cell-free and stromal cell-rich cultures: differences in osteoclast CD11c/CD18 integrin expression. Br. J. Haematol 112, 430–437.PubMedCrossRefGoogle Scholar
  34. 34.
    Squirrell, J., Wokosin, D., White, J., and Bavister, B. (1999) Long-term two photon fluorescence imaging of mammalian embryos without compromising viability. Nat. Biotechnol. 17, 763–767.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Stephen A. Nesbitt
    • 1
  • Michael A. Horton
    • 1
  1. 1.Bone and Mineral Centre, The Rayne Institute, Department of MedicineUniversity College LondonLondonUK

Personalised recommendations