Skip to main content

Cytogenetic Studies Using FISH

Background

  • Protocol
Cancer Cytogenetics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 220))

  • 733 Accesses

Abstract

Prior to the early 1970s, chromosome spreads were block stained with, for example, orcein or Fulgen’s stains, and only those with a distinctive outline could be recognized. Then it was discovered that chromosomes could be made to show a consistent pattern of lighter or darker stained segments (bands) by using fluorescent dyes (fluorochromes) such as atebrin and quinecrine, or by treatment with agents such as trypsin, detergent, or a salt solution (e.g., saline sodium citrate), followed by staining with basic nuclear dyes such as Giemsa, Wright’s, or Leishman’s stain. Once every chromosome could be identified by its unique banding pattern, and recurrent abnormalities could be associated with specific diseases or physical disorders, the science of cytogenetics quickly proved to have direct and practical clinical applications. The chromosomes obtained in studies of malignancy, however, are often of poor morphology, and tend to be involved in complex and subtle rearrangements; in such cases, conventional cytogenetic studies are unable to define fully the entire karyotype. This limitation has been overcome by the introduction of new techniques, known as in situ hybridization (ISH), which bind labeled DNA to specific parts of the chromosomes being studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bentz, M., Dohner, H., Cabot, G., and Lichter, P. (1994) Fluorescence in situ hybridisation in leukemia. The FISH are “spawning.” Leukemia 8, 1447–1452.

    PubMed  CAS  Google Scholar 

  2. Berger, R. (1995) Recent advances in fluorescence in situ hybridisation (FISH) in hematology. Pathol. Biol. 43, 175–180.

    PubMed  CAS  Google Scholar 

  3. Hiorns, L. R., Swansbury G. J., and Catovsky D. (1995) An eightway variant t(15;17) in acute promyelocytic leukemia elucidated using fluorescence in situ hybridization. Cancer Genet.Cytogenet., 83, 136–139.

    Article  PubMed  CAS  Google Scholar 

  4. Saitoh, K., Miura, I., Ohshima, A., et al. (1997) Translocation t(8;12;21)(q22.1;q24.1;q22.1): a new masked type of t(8;21)(q22;q22) in a patient with acute myeloid leukemia. Cancer Genet. Cytogenet. 96, 111–114.

    Article  PubMed  CAS  Google Scholar 

  5. Jadayel, D., Calabrese, G., Min, T., et al. (1995) Molecular cytogenetics of chronic myeloid leukemia with atypical t(6;9)(p23;q34) translocation. Leukemia 9, 981–987.

    PubMed  CAS  Google Scholar 

  6. Speicher, M. R., Ballard, S. G., and Ward, D. C. (1996). Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet. 12, 368–375.

    Article  PubMed  CAS  Google Scholar 

  7. Secker-Walker, L. M., Prentice, H. G., Durrant, J., Richard, S., Hall, E., and Harrison, G. (1997) Cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukemia on MRC trial UKALL XA. Br. J. Haematol. 96, 601–610.

    Article  PubMed  CAS  Google Scholar 

  8. Pui, C-H., Rebeiro, R. C., Campana, D., et al. (1996) Prognostic factors in acute lymphoid and acute myeloid leukemias in infants. Leukemia 10, 952–956.

    PubMed  CAS  Google Scholar 

  9. Ritterbach, J., Hiddemann, W., Beck, J. D., et al. (1998) Detection of hyperdiploid karyotypes (>50 chromosomes) in childhood acute lymphoblastic leukemia (ALL) using fluorescence in situ hybridization (FISH). Leukemia 12, 427–433.

    Article  PubMed  CAS  Google Scholar 

  10. Mertens, F., Johansson, B., and Mitelman, F (1996) Dichotomy of hyperdiploid acute lymphoblastic leukemia on the basis of the distribution of gained chromosomes. Cancer Genet. Cytogenet. 92, 8–10.

    Article  PubMed  CAS  Google Scholar 

  11. Zhao, L., Khan, Z., Hayes, K. J., and Glassman, A. B. (1998) Interphase fluorescence in situ hybridization analysis: A study using centromeric probes 7, 8, and 12. Ann. Clin. Lab. Sci. 28, 51–56.

    PubMed  CAS  Google Scholar 

  12. Matutes, E. (1996) Trisomy 12 in chronic lymphocytic leukemia. Leukemia Res. 5, 375–377.

    Article  Google Scholar 

  13. Kolluri, R. V., Manueldis, L., Cremer, T., Sait, S., Gezer, S., and Raza, A. (1990) Detection of monosomy 7 in interphase cells of patients with myeloid disorders. Am. J. Hematol. 33, 117–122.

    Article  PubMed  CAS  Google Scholar 

  14. Baurmann, H., Cherif, D., and Berger, R. (1993) Interphase cytogenetics by fluorescence in situ hybridization (FISH) for the characterization of monosomy-7-associated myeloid disorders. Leukemia 7, 384–391.

    PubMed  CAS  Google Scholar 

  15. Cotter, F. E. and Johnson, E. (1997) Chromosome 7 and hematological malignancies. Hematology 2, 359–372.

    Google Scholar 

  16. Wyandt, H. E., Chinnappan, D., Ioannidou, S., Salama, M., and O’Hara, C. (1998) Fluorescence in situ hybridization to assess aneuploidy for chromosomes 7 and 8 in hematologic disorders. Cancer Genet. Cytogenet. 102, 114–124.

    Article  PubMed  CAS  Google Scholar 

  17. Grimwade, D., Walker, H., Oliver, F., et al. (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood, 92, 2322–2333.

    PubMed  CAS  Google Scholar 

  18. Tkachuk, D., Westbrook, C., Andreeff, M., et al. (1990) Detection of BCR-ABL fusion in chronic myelogenous leukemia by two-color fluorescence in situ hybridization. Science 250, 559–562.

    Article  PubMed  CAS  Google Scholar 

  19. Werner, M., Ewig, M., Nasarek, A., et al. (1998) Value of fluorescence in situ hybridization for detecting the bcr/abl gene fusion in interphase cells of routine bone marrow specimens. Diagn. Mol. Pathol. 6, 282–287.

    Article  Google Scholar 

  20. Dohner, H. (1994) Detection of chimeric BCR-ABL genes on bone marrow samples and blood smears in chronic myeloid and acute lymphoblastic leukemia by in situ hybridization. Blood 83, 1922–1928.

    PubMed  Google Scholar 

  21. Romana, S. P., Mauchauffe, M., Le Coniat, M., et al. (1995) The t(12;21) of acute lymphoblastic leukemia results in TEL-AML1 gene fusion. Blood 85, 3662–3670.

    PubMed  CAS  Google Scholar 

  22. Romana, S. P., Le Coniat, M., and Berger, R. (1994). t(12;21): A new recurrent translocation in acute lymphoblastic leukemia. Genes Chromosomes Cancer 9, 186–191.

    Article  PubMed  CAS  Google Scholar 

  23. Shurtleff, S. A., Buijs, A., Behm, F. G., et al. (1995) TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis Leukemia 9, 1985–1989.

    PubMed  CAS  Google Scholar 

  24. Wiemels, J. L. and Greaves, M. (1999) Structure and possible mechanisms of childhood acute lymphoblastic leukemia. Cancer Res. 59, 4075–4082.

    PubMed  CAS  Google Scholar 

  25. Loncarevic, I. F., Roitzheim, B., Ritterbach, J., et al. (1999) Trisomy 21 is a recurrent secondary aberration in childhood acute lymphoblastic leukemia with TEL/AML1 gene fusion. Genes Chromosomes Cancer 24, 272–277.

    Article  PubMed  CAS  Google Scholar 

  26. Sorenson, P. H. B., Chen, C-S., Smith, F. O., et al. (1994) Molecular rearrangements of the MLL genes are present in most cases of infant acute myeloid leukemia and are strongly correlated with monocytic or myelomonocytic phenotypes. J. Clin Invest. 93, 429–437.

    Article  Google Scholar 

  27. Chen, C-S., Sorenson, P. H. B., Domer, P. H., et al. (1993) Molecular rearrangements of 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biological variables and poor outcome. Blood 81, 2386–2393.

    PubMed  CAS  Google Scholar 

  28. Swansbury, G. J., Slater, R., Bain, B. J., Moorman, A. V., and Secker-Walker L. M. (1998) Hematological malignancies with t(9;11)(p21–22;q23)—a laboratory and clinical study of 125 cases. Leukemia 12, 792–800.

    Article  PubMed  CAS  Google Scholar 

  29. Heinonen, K., Mrozek, K., Lawrence, D., et al. (1998) Clinical characteristics of patients with de novo acute myeloid leukemia and Isolated trisomy 11: a Cancer and Leukemia Group B study. Br. J. Haematol. 101, 513–520.

    Article  PubMed  CAS  Google Scholar 

  30. Pui, C-H., Behm, F. G., Raimondi, S. C., et al. (1989) Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. New Engl. J. Med., 321, 136–142.

    Article  PubMed  CAS  Google Scholar 

  31. Gill Super, H. J., McCabe, R., Thirman, M. J., et al. (1993) Rearrangement of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood 82, 3705–3711.

    Google Scholar 

  32. Cimino, C., Rapanotti, M. C., Sprovieri, T., and Elia, L. (1998) ALL1 gene alterations in acute leukemia: biological and clinical aspects. Hematologica 83, 350–357.

    CAS  Google Scholar 

  33. Kolomietz, E., Al-Maghrabi, J., Brennan, S., et al. (2001) Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicroscopic deletions and may lead to altered prognosis. Blood 97, 3581–3588.

    Article  PubMed  CAS  Google Scholar 

  34. Caligiuri, M. A., Strout, M. P., Oberkircher, A. R., Yu, F., De La Chapelle, A., and Bloomfield, C. D. (1997). Partial tandem duplication of ALL1 in acute myeloid leukemia with normal cytogenetics of trisomy 11 is restricted to one chromosome. Proc. Natl. Acad. Sci. USA 94, 3899–3902.

    Article  PubMed  CAS  Google Scholar 

  35. Caligiuri, M. A., Strout, M. P., Lawrence, D., et al. (1998) Rearrangement of ALL1 (MLL) in acute leukemia with normal cytogenetics. Cancer Res. 58, 55–59.

    PubMed  CAS  Google Scholar 

  36. Kearney, L. (2000) The impact of the new FISH technologies on the cytogenetics of hematological malignancies. Br. J. Haematol. 104, 648–658.

    Article  Google Scholar 

  37. Parra I., and Windle B. (1993) High-resolution visual mapping of stretched DNA by fluorescent hybridization. Nat. Genet. 5, 17–21.

    Article  PubMed  CAS  Google Scholar 

  38. Pellestor, F., Girardet, A., Andreo, B., and Charlieu, J. (1994) A polymorphic alpha satellite sequence for human chromosome 13 detected by oligonucleotide primed in situ labelling (PRINS). Hum. Genet. 94, 346–348.

    Article  PubMed  CAS  Google Scholar 

  39. Soenen, V., Fenaux, P., Flactif, M., et al. (1995) Combined immunophenotyping and in situ hybridization (FICTION)—a rapid method to study cell lineage involvement in myelodysplastic disorder. Br. J. Haematol. 90, 701–706.

    Article  PubMed  CAS  Google Scholar 

  40. Dewald, G. W., Stallard, R., Alsaadi, A., et al. (2000) A multicenter investigation with d-FISH BCR/ABL1 probes. Cancer Genet. Cytogenet. 116, 97–104.

    Article  PubMed  CAS  Google Scholar 

  41. Schad, C. R. and Dewald, G. W. (1995) Building a New Clinical Test for Fluorescence in situ hybridization. Appl. Cytogenet. 21, 1–4.

    Google Scholar 

  42. Drach, J., Roka, S., Ackermann, J., Zojer, N., Schuster, R., and Fliegl, M. (1997). Fluorescence in situ hybridization: laboratory requirements and quality control. Lab. Med. 21, 683–685.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Min, T., Swansbury, J. (2003). Cytogenetic Studies Using FISH. In: Swansbury, J. (eds) Cancer Cytogenetics. Methods in Molecular Biology™, vol 220. Humana Press. https://doi.org/10.1385/1-59259-363-1:173

Download citation

  • DOI: https://doi.org/10.1385/1-59259-363-1:173

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-080-9

  • Online ISBN: 978-1-59259-363-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics