The Myeloid Disorders

  • John Swansbury
Part of the Methods in Molecular Biology™ book series (MIMB, volume 220)


Malignant myeloid disorders have broadly similar responses to cytogenetic techniques and many have similar chromosome abnormalities. Included are diseases that are frankly malignant, such as acute myeloid leukemia (AML), and some that may be regarded as premalignant, such as the myeloproliferative disorders (MPD). A proportion of the premalignant group may progress to acute leukemia but they are serious diseases in their own right, often difficult to treat, and may be fatal. They are all clonal disorders, that is, the bone marrow includes a population of cells ultimately derived from a single abnormal cell, which usually tends to expand and eventually suppress or replace the growth and development of normal blood cells. This group of disorders includes the following:
  • The myeloproliferative disorders (MPD)

  • The chronic myeloid leukemias (CML)

  • The myelodysplastic syndromes (MDS)

  • Aplastic anemia (AA)

  • Acute myeloid leukemia (AML)

The major clinical and cytogenetic features of the myeloid malignancies are summarized in the following subheadings.


Acute Myeloid Leukemia Chronic Myeloid Leukemia Aplastic Anemia Disseminate Intravascular Coagulation Fanconi Anemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nacheva, E., Holloway, T., Carter, N., Grace, C., White, N., and Green, A. R. (1995) Characterization of 20q deletions in patients with myeloproliferative disorders or myelodysplastic syndromes. Cancer Genet. Cytogenet. 80, 87–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Third International Workshop on Chromosomes in Leukemia (1981) Report on essential thrombocythemia. Cancer Genet. Cytogenet. 4, 138–142.Google Scholar
  3. 3.
    Aviram, A., Blickstein, D., Stark, P., et al. (1999) Significance of BCR-ABL transcripts in bone marrow aspirates of Philadelphia-negative essential thrombocythemia patients. Leukemia Lymphoma 33, 77–82.PubMedGoogle Scholar
  4. 4.
    Singer, I. O., Sproul, A., Tait, R. C., Soutar, R., and Gibson, B. (1998) BCR-ABL transcripts detectable in all myeloproliferative states. Blood 92, 427a.Google Scholar
  5. 5.
    Marasca, R., Luppi, M., Zucchini, P., Longo, G., Torelli, G., and Emilia, G. (1998) Might essential thrombocythemia carry Ph anomaly. Blood 91, 3084.PubMedGoogle Scholar
  6. 6.
    Hackwell, S., Ross, F., and Cullis, J. O. (1999) Patients with essential thrombocythemia do not express BCR-ABL transcripts. Blood 93, 2420–2421.PubMedGoogle Scholar
  7. 7.
    Cervantes, F., Rozman, M., Urbano-Ispizua, A., Monserrat, E., and Rozman, C. (1990) A study of prognostic factors in blast crisis of Philadelphia chromosome positive chronic myeloid leukemia. Br. J. Haematol. 76, 27–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Huntly, B. J., Reid, A. G., Bench, A. J., et al. (2001) Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood 98, 1732–1738.PubMedCrossRefGoogle Scholar
  9. 9.
    Heim, S. and Mitelman, F. (1995) Cancer Cytogenetics, 2nd edit. Pub. A. R. Liss, New York, p. 38.Google Scholar
  10. 10.
    Fioretos, T., Strombeck, B., Sandberg, T., et al. (1999) Isochromosome 17q in blast crisis of chronic myeloid leukemia and in other hematologic malignancies is the result of clustered breakpoints in 17p11 and is not associated with coding TP53 mutations. Blood 94, 225–232.PubMedGoogle Scholar
  11. 11.
    Bennett, J. M., Catovsky, D., Daniel, M. T., et al. (1982) The FAB Co-operative Group. Proposals for the classification of the myelodysplastic syndromes. Br. J. Haematol. 51, 189–199.PubMedGoogle Scholar
  12. 12.
    Van den Berghe, H., Vermaelen, K., Mecucci, C., Barbieri, D., and Tricot, G. (1985) The 5q-anomaly. Cancer Genet. Cytogenet. 17, 189–255.PubMedCrossRefGoogle Scholar
  13. 13.
    Passmore, S. J., Hann, I. M., Stiller, C. A., et al. (1995) Pediatric myelodysplasia: a study of 68 children and a new prognostic scoring system. Blood 85, 1742–1750.PubMedGoogle Scholar
  14. 14.
    Reiter, A., Hehlmann, R., Goldman, J. M., and Cross, N. C. P. (1999) The 8p11 myeloproliferative syndrome. Medizin. Klin. 94, 207–210.CrossRefGoogle Scholar
  15. 15.
    Appelbaum, F. R., Barrall, J., Storb, R., et al. (1987) Clonal cytogenetic abnormalities in patients with otherwise typical aplastic anemia. Exp. Hematol. 15, 1134–1139.PubMedGoogle Scholar
  16. 16.
    Moormeier, J. A., Rubin, C. M., Le Beau, M. M., Vardiman, J. W., Larson, R. A., and Winter, J. N. (1991) Trisomy 6: a recurring cytogenetic abnormality associated with marrow hypoplasia. Blood 77, 1397–1398.PubMedGoogle Scholar
  17. 17.
    Bennett, J. M., Catovsky, D., Daniel, M. T., et al. (1976) Proposals for the classification of acute leukemias (FAB co-operative group). Br. J. Haematol. 33, 451–458.PubMedCrossRefGoogle Scholar
  18. 18.
    Bennett, J. M., Catovsky, D., Daniel, M. T., et al. (1985) Proposed revised criteria for the classification of acute myeloid leukemia. Ann. Intern. Med. 103, 626–629.Google Scholar
  19. 19.
    Mehta, A. B., Bain, B. J., Fitchett, M., Shah, S., and Secker-Walker, L. M. (1998) Trisomy 13 and myeloid malignancy—characteristic blast cell morphology: a United Kingdom cancer cytogenetics group survey. Br. J. Haematol. 101, 749–752.PubMedCrossRefGoogle Scholar
  20. 20.
    Langabeer, S. E., Grimwade, D., Walker, H., et al. (1998) A study to determine whether trisomy 8, deleted 9q and trisomy 22 are markers of cryptic rearrangements of PML/RARalpha, AML1/ETO and CBFB/MYH11 respectively in acute myeloid leukemia. Br. J. Haematol. 101, 338–340.PubMedCrossRefGoogle Scholar
  21. 21.
    Rege, K., Swansbury, G. J., Atra, A. A., et al. (2001) Disease features in acute myeloid leukemia with t(8;21)(q22;q22). Influence of age, secondary karyotype abnormalities, CD19 status, and extramedullary leukemia on survival. Leukemia Lymphoma 40, 67–77.CrossRefGoogle Scholar
  22. 22.
    Stock, A. D., Dennis, T. R., and Spallone, P. A. (2000) Precise localization by microdissection/reverse ISH and FISH of the t(15;17)(q24;q21.1) chromosomal breakpoints associated with acute promyelocytic leukemia. Cancer Genet. Cytogenet. 119, 15–17.PubMedCrossRefGoogle Scholar
  23. 23.
    Grimwade, D., Walker, H., Oliver, F., et al. (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood 92, 2322–2333.PubMedGoogle Scholar
  24. 24.
    Nucifora, G., Larson, R. A., and Rowley, J. D. (1993) Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood 82, 712–715.PubMedGoogle Scholar
  25. 25.
    Hiorns, L. R., Swansbury, G. J., Mehta, J., et al. (1997) Additional abnormalities confer worse prognosis in acute promyelocytic leukemia. Br. J. Haematol. 96, 314–321.PubMedCrossRefGoogle Scholar
  26. 26.
    Pantic, M., Novak, A., Marisavljevic, D., et al. (2000) Additional chromosome aberrations in acute promyelocytic leukemia: characteristics and prognostic influence. Medical Oncology 17, 307–313.PubMedCrossRefGoogle Scholar
  27. 27.
    Tobal, K., Saunders, M. J., Grey, M. R., and Yin, J. A. (1995) Persistence of RAR alpha-PML fusion mRNA detected by reverse transcriptase polymerase chain reaction in patients in long-term remission of acute promyelocytic leukemia. Br. J. Haematol. 90(3), 615–618.PubMedCrossRefGoogle Scholar
  28. 28.
    Licht, J. D., Chomienne, C., Goy, A., et al. (1995) Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 85, 1083–1094.PubMedGoogle Scholar
  29. 29.
    Wong, K. F. and Kwong, Y. L. (1999) Trisomy 22 in acute myeloid leukemia: a marker for myeloid leukemia with monocytic features and cytogenetically cryptic inversion 16. Cancer Genet. Cytogenet. 109, 131–133.PubMedCrossRefGoogle Scholar
  30. 30.
    Betts, D. R., Rohatiner, A. Z. S., Evans, M. L., et al. (1992) Abnormalities of chromosome 16q in myeloid malignancy: 14 new cases and a review of the literature. Leukemia 6, 1250–1256.PubMedGoogle Scholar
  31. 31.
    Hanslip, J. I., Swansbury, G. J., Pinkerton, R., and Catovsky, D. (1992) The translocation t(8;16)(p11;p13) defines an AML subtype with distinct cytology and clinical features. Leukem. Lymphoma 6, 479–486.CrossRefGoogle Scholar
  32. 32.
    Sorour, A., Brito-Babapulle, V., Smedley, D., Yuille, M., and Catovsky, D. (2000) Unusual breakpoint distribution of 8p abnormalities in T-prolymphocytic leukemia: a study with YACS mapping to 8p11–p12. Cancer Genet. Cytogenet. 121, 128–132.PubMedCrossRefGoogle Scholar
  33. 33.
    Abdou, S. M. H., Jadayel, D. M., Min, T., et al. (2002) Incidence of MLL Rearrangement in acute myeloid leukemia, and CALM-AF10 fusion in AML M4. Leukemia & Lymphoma 43, 89–95.Google Scholar
  34. 34.
    Sait, S. N., Brecher, M. L., Green, D. M., and Sandberg, A. A. (1988) Translocation t(1;22) in congenital acute megakaryocytic leukemia. Cancer Genet. Cytogenet. 34, 277–280.PubMedCrossRefGoogle Scholar
  35. 35.
    Carroll, A., Civin, C., Schneider, N., et al. (1991) The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute mega-karyoblastic leukemia: a Pediatric Oncology Group Study. Blood 78, 748–752.PubMedGoogle Scholar
  36. 36.
    Schoch, C., Haase, D., Fonatsch, C., et al. (1997) The significance of trisomy 8 in de novo acute myeloid leukemia: the accompanying chromosome aberrations determine the prognosis. Br. J. Haematol. 99, 605–611.PubMedCrossRefGoogle Scholar
  37. 37.
    Secker-Walker, L. M., Mehta, A., Bain, B., and Martineau, M. (1995) Abnormalities of 3q21 and 3q26 in myeloid malignancy: a United Kingdom cancer cytogenetic group study. Br. J. Haematol. 91, 490–501.PubMedCrossRefGoogle Scholar
  38. 37.
    Cuneo, A., Kerim, S., Vandenberghe, E., et al. (1989) Translocation t(6;9) occurring in acute myelofibrosis, myelodysplastic syndrome, and acute nonlymphocytic leukemia suggests multipotent stem cell involvement. Cancer Genet. Cytogenet. 42, 209–219.PubMedCrossRefGoogle Scholar
  39. 39.
    Hiorns, L. R., Min, T., Swansbury, G. J., Zelent, A., Dyer, M. J. S., and Catovsky, D. (1994) Interstitial insertion of retinoic receptor-α gene in acute promyelocytic leukemia with normal chromosomes 15 and 17. Blood 83, 2946–2951.PubMedGoogle Scholar
  40. 40.
    Langabeer, S. E., Walker, H., Rogers, J. R., et al. (1997a) Incidence of AML1/ETO fusion transcripts in patients entered into the MRC AML trials. Br. J. Haematol. 99, 925–928.PubMedCrossRefGoogle Scholar
  41. 41.
    Langabeer, S. E., Walker, H., Gale, R. E., et al. (1997b) Frequency of CBFbeta/MYH11 fusion transcripts in patients entered into the U. K. MRC AML trials. Br. J. Haematol. 96, 738–739.CrossRefGoogle Scholar
  42. 42.
    Rowe, D., Cotterill, S. J., Ross, F. M., et al. (2000) Cytogenetically cryptic AML1/ETO and CBFB/MYH11 gene rearrangements: incidence in 412 cases of acute myeloid leukemia. Br. J. Haematol. 111, 1051–1056.PubMedCrossRefGoogle Scholar
  43. 43.
    Killick, S., Matutes, E., Powles, R. L., et al. (1999) Outcome of biphenotypic acute leukemia. Hematologica 84, 699–706.Google Scholar
  44. 44.
    Carbonell, F., Swansbury, J., Min, T., et al. (1996) Cytogenetic findings in acute biphenotypic leukemia. Leukemia 10, 1283–1287.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • John Swansbury
    • 1
  1. 1.Academic Haematology and Cytogenetics, The Royal Marsden NHS TrustThe Institute of Cancer ResearchUK

Personalised recommendations