Skip to main content

Generation of Longer cDNA Fragments from SAGE Tags for Gene Identification

  • Protocol
Book cover Generation of cDNA Libraries

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 221))

Abstract

Serial analysis of gene expression (SAGE) is a powerful technique for genomewide analysis of gene expression (114). However, almost two-thirds of SAGE tags cannot be used directly for gene identification for two reasons. First, many of SAGE tags match to multiple known expressed sequences because of the short length of SAGE tag sequences (1214). Second, many SAGE tags do not match any known expressed sequences because the sequences corresponding to these SAGE tags have not been identified yet (214). These problems substantially diminish the power of the SAGE technique. The GLGI (Generation of Longer complementary DNA [cDNA] fragments from SAGE tags for Gene Identification) technique was designed to solve these two problems (15). The basic principle of GLGI is to use the SAGE tag as the sense primer, and anchored oligo-(dT) primers as the antisense primer to amplify the original 3′ cDNA from which the SAGE tag was derived. The size of 3′ cDNA will be hundreds of bases longer, which is long enough for solving the two problems. In a typical SAGE project, hundreds or thousands of SAGE tags need to be further analyzed. To facilitate such large-scale performance, we developed the GLGI method into a high-throughput procedure (16). In this high-throughput GLGI procedure, 3′ cDNAs starting from the last CATG are used as the templates for GLGI amplification, a SAGE tag sequence is used as the sense primer, and a universal sequence located at the 3′ end of all the cDNA templates generated from anchored oligo(dT) primers is used as antisense primer to amplify the original 3′ cDNA template from which the SAGE tag was derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995) Serial analysis of gene expression. Science 270, 484–487.

    Article  CAS  PubMed  Google Scholar 

  2. Velculescu, V. E., Madden, S. L., Zhang, L., Lash, A. E., Yu, J., Rago, C., et al. (1999) Analysis of human transcriptomes. Nat. Genet. 23, 387–388.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, L., Zhou, W., Velculescu, V. E., Kern, S. E., Hruban, R. H., Hamilton, S. R., et al. (1997) Gene expression profiles in normal and cancer cells. Science 276, 1268–1272.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, H., Centola, M., Altschu, S. F., and Metzger, H. (1998) Characterization of gene expression in resting and activated mast cells. J. Exp. Med. 188, 1657–1668.

    Article  CAS  PubMed  Google Scholar 

  5. Virlon, B., Cheval, L., Buhler, J. M., Billon, E., Doucet, A., and Elalouf, J. M. (1999) Serial microanalysis of renal transcriptomes. Proc. Natl. Acad. Sci. USA 96, 15,286–15,291.

    Article  CAS  PubMed  Google Scholar 

  6. Welle, S., Bhatt, K., and Thornton, C. A. (1999) Inventory of high-abundance mRNAs in skeletal muscle of normal men. Genome Res. 9, 506–513.

    CAS  PubMed  Google Scholar 

  7. Angelastro, J. M., Klimaschewski, L., Tang, S., Vitolo, O. V., Weissman, T. A., Donlin, L. T., et al. (2000) Identification of diverse nerve growth factor-regulated genes by serial analysis of gene expression (SAGE) profiling. Proc. Natl. Acad. Sci. USA 97, 10,424–10,429.

    Article  CAS  PubMed  Google Scholar 

  8. Charpentier, A. H., Bednarek, A. K., Daniel, R. L., Hawkins, K. A., Laflin, K. J., Gaddis, S., et al. (2000) Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res. 60, 5977–5983.

    CAS  PubMed  Google Scholar 

  9. El-Meanawy, M. A., Schelling, J. R., Pozuelo, F., Churpek, M. M., Ficker, E. K., Iyengar, S., et al. (2000) Use of serial analysis of gene expression to generate kidney expression libraries. Am. J. Physiol. Renal Physiol. 279, F383–F392.

    CAS  PubMed  Google Scholar 

  10. Hough, C. D., Sherman-Baust, C. A., Pizer, E. S., Montz, F. J., Im, D. D., Rosen-shein, N. B., et al. (2000) Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Res. 60,6281–6287.

    CAS  PubMed  Google Scholar 

  11. Welle, S., Bhatt, K., and Thornton, C. A. (2000) High-abundance mRNAs in human muscle: comparison between young and old. J. Appl. Physiol. 89, 297–304.

    CAS  PubMed  Google Scholar 

  12. Lee, S., Zhou, G., Clark, T., Chen, J., Rowley, J. D., and Wang, S. M. (2001) The pattern of gene expression in human CD15+ myeloid progenitor cells. Proc. Natl. Acad. Sci. USA 98, 3340–3345.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, J., Rowley, D. A., Clark, T., Lee, S., Zhou, G., Beck, C., et al. (2001) The pattern of gene expression in mouse Gr-1(+) myeloid progenitor cells. Genomics 77, 149–162.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, G., Chen, J., Lee, S., Clark, T., Rowley, J. D., and Wang, S. M. (2001) The pattern of gene expression in human CD34(+) stem/progenitor cells. Proc. Natl. Acad. Sci. USA 98, 13,966–13,971.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, J., Rowley, J. D., and Wang, S. M. (2000) Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc. Natl. Acad. Sci. USA 97, 349–353.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, J., Lee, S., Zhou, G., and Wang, S. M. (2002) High-throughput GLGI procedure for converting a large number of serial analysis of gene expression tag sequences into 3 complementary DNAs. Genes Chromosomes Cancer 33, 252–261.

    Article  CAS  PubMed  Google Scholar 

  17. Lee, S., Chen, J., Zhou, G., and Wang, S. M. (2001) Generation of high quality and quantity of tag/ditag for SAGE analysis. BioTechniques 31, 348–354.

    CAS  PubMed  Google Scholar 

  18. Wang, S. M. and Rowley, J. D. (1998) A strategy for genome-wide gene analysis: integrated procedure for gene identification. Proc. Natl. Acad. Sci. USA 95, 11,909–11,914.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, S. M., Fears, S. C., Zhang, L., Chen, J., and Rowley, J. D. (2000) Screening poly(dA/dT)–cDNAs for gene identification. Proc. Natl. Acad. Sci. USA 97, 4162–4167.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Chen, JJ., Lee, S., Zhou, G., Rowley, J.D., Wang, S.M. (2003). Generation of Longer cDNA Fragments from SAGE Tags for Gene Identification. In: Ying, SY. (eds) Generation of cDNA Libraries. Methods in Molecular Biology™, vol 221. Humana Press. https://doi.org/10.1385/1-59259-359-3:207

Download citation

  • DOI: https://doi.org/10.1385/1-59259-359-3:207

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-066-3

  • Online ISBN: 978-1-59259-359-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics