Future Perspectives

  • Shao-Yao Ying
Part of the Methods in Molecular Biology™ book series (MIMB, volume 221)

Abstract

We have made tremendous strides in our understanding and utilization of the new methodologies in molecular biology over the past 50 yr. With our recent access to complete genome sequences, the function of different transcripts and proteins, the gene products, will soon be determined and, consequently, their functions in cells, tissues, and organisms will be defined. Therefore, gene expression analysis not only provides an important functional genomics technology but also will lead to future research opportunities, diagnostic utilization, targeted drug development, and clinical therapeutic applications. With more defined methodologies, more specific questions in molecular biology can be answered. The study of molecular biology has certainly entered a phase of exponential growth and productivity. In this chapter, general principles will be proposed, and examples will be provided for exploring the future perspectives of the biomedical field, using some novel technologies described in this book.

Keywords

Arthritis Ischemia Tyrosine Anemia Assure 

References

  1. 1.
    Lakhani, S. R. and Ashworth, A. (2001) Microarray and histopathological analysis of tumours: the future and the past? Nat. Rev. Cancer 1, 151–157.PubMedCrossRefGoogle Scholar
  2. 2.
    Nuttall, M. E. (2001) Drug discovery and target validation. Cells Tissues Organs 169, 265–271.PubMedCrossRefGoogle Scholar
  3. 3.
    Truong, A. H. and Ben-David, Y. (2000) The role of Fli-1 in normal cell function and malignant transformation. Oncogene 19, 6482–6489.PubMedCrossRefGoogle Scholar
  4. 4.
    Lin, S. L., Chuong, C. M., Widelitz, R. B., and Ying, S. Y. (1999) In vivo analysis of cancerous gene expression by RNA-polymerase chain reaction. Nucleic Acids Res. 27, 4585–4589.PubMedCrossRefGoogle Scholar
  5. 5.
    Becker, I., Becker, K. F., Rohrl, M. H., and Hofler, H. (1997) Leser-assisted preparation of single cells from stained histological slides fro gene analysis. Histochem. Cell. Biol. 108, 447–451.PubMedCrossRefGoogle Scholar
  6. 6.
    Rubin, M. A. (2001) Use of laser capture microdissection, cDNA microarrays, and tissue microarrys in advancing our understanding of prostae cancer. J. Pathol. 195, 80–86.PubMedCrossRefGoogle Scholar
  7. 7.
    Embleton, M. J., Gorochov, G., Jones, P. T., and Winter, G. (1992) In-cell PCR from mRNA: amplifying and linking the rearranged immunoglobulin heavy and light chain V-genes within single cells. Nucleic Acids Res. 20, 3831–3837.PubMedCrossRefGoogle Scholar
  8. 8.
    Ying, S. Y. and Lin, S. L. (1999) High performance subtractive hybridization of cDNAs by covalent boding between specific complementary nucleotides. BioTechniques 26, 966–979.PubMedGoogle Scholar
  9. 9.
    Lin, S. L., Chuong, C. M., and Ying, S. Y. (2001) A novel mRN-cDNA interference phenomenon for silencing bcl-2 expression in human prostate cancer LNCaP cells. Biochem. Biophy. Res. Commun. 281, 639–644.CrossRefGoogle Scholar
  10. 10.
    Elbashir, S. M., Harbath, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mdiate RNA interference in cultured mammalian cells. Nature 41, 494–498.CrossRefGoogle Scholar
  11. 11.
    Prasad, K. V., Ao, Z., Yoon, Y., Wu, M. X., Rizk, M., Jacquot, S., et al. (1997) Protein CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein. Proc. Natl. Acad. Sci. USA 94, 6346–6351.PubMedCrossRefGoogle Scholar
  12. 12.
    Lin, S. L. and Ying, S. Y. (1999) Differentially expressed genes in activin-induced apoptotic LNCaP cells. Biochem. Biophys. Res. Commun. 257, 187–192.PubMedCrossRefGoogle Scholar
  13. 13.
    Henke, A., Launhardt, H., Klement, K., Stelzner, A., Zell, R., and Munder, T. (2000) Apoptosis in coxsackievirus B3-caused diseases: interaction between the capsid protein VP2 and the proapoptotic protein siva. J. Virol. 74, 4284–4290.PubMedCrossRefGoogle Scholar
  14. 14.
    O’Brian, C. A. (1998) Protein kinase C-alpha: a novel target for the therapy of androgen-independent prostate cancer? [Revie-hypothesis]. Oncol. Rep. 5, 305–309.Google Scholar
  15. 15.
    Johnson, M. I. and Hamdy, F. C. (1998) Apoptosis regulating genes in prostate cancer. Oncol. Rep. 5, 553–557.PubMedGoogle Scholar
  16. 16.
    Moul, J. W. (1999) Angiogenesis, p53, bcl-2 and Ki-67 in the progression of prostate cancer after radical prostatectomy. Eur. Urol. 35, 399–407.PubMedCrossRefGoogle Scholar
  17. 17.
    Howell, S. B. (2000) Resistance to apoptosis in prostate cancer cells. Mol. Urol. 4, 225–229.PubMedGoogle Scholar
  18. 18.
    Kyprianou, N., Chon, J., and Benning, C. M. (2000) Effects of alpha(1)-adreno-ceptor (alpha(1)-AR) antagonists on cell proliferation and apoptosis in the prostate: therapeutic implications in prostatic disease. Prostate 9(Suppl.), 42–46.CrossRefGoogle Scholar
  19. 19.
    Fosslien, E. (2000) Biochemistry of cyclooxygenase (COX)-2 inhibitors and molecular pathology of COX-2 in neoplasia. Crit. Rev. Clin. Lab. Sci. 37, 431–502.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee, C., Janulis, L., Ilio, K., Shah, A., Park, I., Kim, S., et al. (2000) In vitro models of prostate apoptosis: clusterin as an antiapoptotic mediator. Prostate 9(Suppl.), 21–24.CrossRefGoogle Scholar
  21. 21.
    Messina, M. and Bennink, M. (1998) Soyfoods, isoflavones and risk of colonic cancer: a review of the in vitro and in vivo data. Baillieres Clin. Endocrinol. Metab. 12, 707–728.PubMedCrossRefGoogle Scholar
  22. 22.
    Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J. (1991) Tumor angiogenesis and metastasis correction in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Verheul, H. M. and Pinedo, H. M. (2000) The role of vascular endothelial growth factor (VEGF) in tumor angiogenesis and early clinical development of VEGF-receptor kinase inhibitors. Clin. Breast Cancer 1(Suppl.), S80–S84.PubMedCrossRefGoogle Scholar
  24. 24.
    Peters, G. J., De Bruin, M., Fukushima, M., Van Triest, B., Hoekman, K., Pinedo, H. M., et al. (2000) Thymidine phosphorylase in angiogenesis and drug resistance. Homology with platelet-derived endothelial cell growth factor. Adv. Exp. Med. Biol. 486, 291–294.PubMedCrossRefGoogle Scholar
  25. 25.
    Cross, M. J. and Claesson-Welsh, L. (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 22, 201–207.PubMedCrossRefGoogle Scholar
  26. 26.
    Hiscox, S. and Jiang, W. G. (1997) Interleukin-12, an emerging anti-tumour cytokine. In Vivo 11, 125–132.PubMedGoogle Scholar
  27. 27.
    de Fraipont, F., Nicholson, A. C., Feige, J. J., and Van Meir, E. G. (2001) Thrombospondins and tumor angiogenesis. Trends Mol. Med. 7, 401–407.PubMedCrossRefGoogle Scholar
  28. 28.
    Lo, J. C. and Grumbach, M. M. (2001) Pregnancy outcomes in women with congenital virilizing adrenal hyperplasia. Endocrinol. Metab. Clin. North. Am. 30, 207–229.PubMedCrossRefGoogle Scholar
  29. 29.
    Smith, B. J. and O’Brien, J. M. (1996) The genetics of retinoblastoma and current diagnostic testing. J. Pediatr. Ophthalmol. Strabismus 33, 120–123.PubMedGoogle Scholar
  30. 30.
    Rowley, P. T., Loader, S., and Levenkron, J. C. (1997) Cystic fibrosis carrier population screening: a review. Genet. Test. 1, 53–59.PubMedGoogle Scholar
  31. 31.
    Verlinsky, Y., Rechitsky, S., Verlinsky, O., Ivachnenko, V., Lifchez, A., Kaplan, B., et al. (1999) Prepregnancy testing for single-gene disorders by polar analysis. Genet. Test. 3, 185–190.PubMedGoogle Scholar
  32. 32.
    Kaplan, F. (1998) Ta-Sachs disease carrier screening: a model for prevention of genetic disease. Genet. Test. 2, 271–292.PubMedCrossRefGoogle Scholar
  33. 33.
    Kimura, W., Zhao, B., Futakawa, N., Muto, T., and Makuuchi, M. (1999) Significance of K-ras codon 12 point mutation in pancreatic juice in the diagnosis of carcinoma of the pancreas. Hepatogastroenterology 46, 532–539.PubMedGoogle Scholar
  34. 34.
    Debouck, C. and Goodfellow, P. N. (1999) DNA microarrays in drug discovery and development. Nat. Genet. 21(Suppl.), 33–37.Google Scholar
  35. 35.
    Marton, M., DeRisi, J., Bennett, H., Iyer, V., Stoughton, R., Burckard, J., et al. (1998) Drug target validation and identification of secondary drug target effects using DNA microarray. Nat. Med. 4, 1293–1301.PubMedCrossRefGoogle Scholar
  36. 36.
    Lin, S. L, Suksaweang, S., Chuong, C. M., and Ying, S. Y. (2001) D-RNAi (messenger RN-antisense DNA interference) as a novel defense system against cancer and viral infections. Current Cancer Drug Targets 1, 241–247.PubMedCrossRefGoogle Scholar
  37. 37.
    Perricone, M. A., Morris, J. E., Pavelka, K., Plog, M. S., O’Sullivan, B. P., Joseph, P. M., et al. (2001) Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. II. Transfection efficiency in airway epithelium. Hum. Gene Ther. 12, 1383–1394.PubMedCrossRefGoogle Scholar
  38. 38.
    Rosengart, T. K., Lee, L. Y., Patel, S. R., Kligfield, P. D., Okin, P. M., Hackett, N. R., et al. (1999) Six-month assessment of a phase I trial of angiogenic gene therapy for the treatment of coronary artery disease using direct intramyocardial administration of an adenovirus vector expressing the VEGF121 cDNA. Ann. Surg. 230, 466–470.PubMedCrossRefGoogle Scholar
  39. 39.
    Keir, S. D., Xiao, X., Li, J., and Kennedy, P. G. (2001) Adeno-associated virus-mediated delivery of glial cell line-derived neurotrophic factor protects motor neuron-like cells from apoptosis. J. Neurovirol. 7, 437–446.PubMedCrossRefGoogle Scholar
  40. 40.
    Gouze, J. N., Ghivizzani, S. C., Gouze, E., Palmer, G. D., Betz, O. B., Robbins, P. D., et al. (2001) Gene therapy for rheumatoid arthritis. Hand Surg. 6, 211–219.PubMedCrossRefGoogle Scholar
  41. 41.
    Rosen, F. S. (2002) Successful gene therapy for severe combined immunodeficiency. N. Engl. J. Med. 346, 1241–1243.PubMedCrossRefGoogle Scholar
  42. 42.
    Ng, Y. Y, Bloem, A. C., van Kessel, B., Lokhorst, H., Logtenberg, T., and Staal, F. J. (2002) Selective in vitro expansion and efficient retroviral transduction of human CD34+ CD38− haematopoietic stem cells. Br. J. Haematol. 117, 226–237.PubMedCrossRefGoogle Scholar
  43. 43.
    Veelken, H., Jesuiter, H., Mackensen, A., Kulmburg, P., Schultze, J., Rosenthal, F., et al. (1994) Primary fibroblasts from human adults as target cells for ex vivo transfection and gene therapy. Hum. Gene Ther. 5, 1203–1210.PubMedCrossRefGoogle Scholar
  44. 44.
    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.PubMedCrossRefGoogle Scholar
  45. 45.
    Carthew, R. W. (2001) Gene silencing by double-stranded RNA. Curr. Opin. Cell. Biol. 13, 244–248.PubMedCrossRefGoogle Scholar
  46. 46.
    Barstead, R. (2001) Genome-wide RNAi. Curr. Opin. Chem. Biol. 5, 63–66.PubMedCrossRefGoogle Scholar
  47. 47.
    Aronsohn, A. I. and Hughes, J. A. (1998) Nuclear localization signal peptides enhance cationic liposome-mediated gene therapy. J. Drug Target. 5, 163–169.PubMedCrossRefGoogle Scholar
  48. 48.
    Hamilton, S. E., Simmons, C. G., Kathiriya, I. S., and Corey, D.R. (1999) Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem. Biol. 6, 343–351.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Shao-Yao Ying
    • 1
  1. 1.Department of Cell and Neurobiology, Keck School of MedicineUniversity of Southern CaliforniaLos Angeles

Personalised recommendations