Skip to main content

Real-Time Measurements of Phasic Changes in Extracellular Dopamine Concentration in Freely Moving Rats by Fast-Scan Cyclic Voltammetry

  • Protocol
Book cover Drugs of Abuse

Part of the book series: Methods In Molecular Medicine™ ((MIMM,volume 79))

Abstract

Rapid, transient changes in extracellular dopamine concentrations following salient stimuli in freely moving rats have recently been detected using fast-scan cyclic voltammetry (1,2). This type of neurotransmission had not been previously observed (for any neurotransmitter), but has been implicated by electrophysiological studies. Schultz et al. (3) reported synchronous burst firing of midbrain dopaminergic neurons following presentation of liquid reinforcers or associated cues. Such firing patterns would predictably produce transient (lasting no more than a few seconds), high concentrations (high nanomolar) of extracellular dopamine in terminal regions. This phasic dopaminergic neurotransmission has been heavily implicated in associative learning and reward processing, and therefore may prove essential in understanding the reinforcing actions of drugs of abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rebec, G. V., Christensen, J. R., Guerra, C., and Bardo, M. T. (1997) Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Res. 776, 61–67.

    Article  PubMed  CAS  Google Scholar 

  2. Robinson, D. L., Phillips, P. E. M., Budygin, E. A., Trafton, B. J., Garris, P. A., and Wightman, R. M. (2001) Sub-second changes in accumbal dopamine during sexual behavior in male rats. NeuroReport 12, 2549–2552.

    Article  PubMed  CAS  Google Scholar 

  3. Schultz, W. (1992) Activity of dopamine neurons in the behaving primate. Semin. Neurosci. 4, 129–138.

    Article  Google Scholar 

  4. Budygin, E. A., Kilpatrick, M. R., Gainetdinov, R. R., and Wightman, R. M. (2000) Correlation between behavior and extracellular dopamine levels in rat striatum: comparison of microdialysis and fast-scan cyclic voltammetry. Neurosci. Lett. 281, 9–12.

    Article  PubMed  CAS  Google Scholar 

  5. Budygin, E. A., Phillips, P. E. M., Robinson, D. L., Kennedy, A. P., Gainetdinov, R. R., and Wightman, R. M. (2001) Effect of acute ethanol on striatal dopamine neurotransmission in ambulatory rats. J. Pharmacol. Exp. Ther. 297, 27–34.

    PubMed  CAS  Google Scholar 

  6. Michael, D. J. and Wightman, R. M. (1999) Electrochemical monitoring of biogenic amine neurotransmission in real time. J. Pharm. Biomed. Anal. 19, 33–46.

    Article  PubMed  CAS  Google Scholar 

  7. Kawagoe, K. T. and Wightman, R. M. (1994) Characterization of amperometry for in vivo measurement of dopamine dynamics in the rat brain. Talanta 41, 865–874.

    Article  PubMed  CAS  Google Scholar 

  8. Gerhardt, G. A. and Hoffman, A. F. (2001) Effects of recording media composition on the responses of Nafion-coated carbon fiber microelectrodes measured using high-speed chronoamperometry. J. Neurosci. Methods 109, 13–21.

    Article  PubMed  CAS  Google Scholar 

  9. Kawagoe, K. T., Zimmerman, J. B., and Wightman, R. M. (1993) Principles of voltammetry and microelectrode surface states. J. Neurosci. Methods 48, 225–240.

    Article  PubMed  CAS  Google Scholar 

  10. Gerhardt, G. A., Oke, A. F., Nagy, G., Moghaddam, B., and Adams, R. N. (1984) Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res. 290, 390–395.

    Article  PubMed  CAS  Google Scholar 

  11. Bath, B. D., Michael, D. J., Trafton, B. J., Joseph, J. D., Runnels, P. L., and Wightman, R. M. (2000) Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. Analyt. Chem. 72, 5994–6002.

    Article  CAS  Google Scholar 

  12. Hafizi, S., Kruk, Z. L., and Stamford, J. A. (1990) Fast cyclic voltammetry: improved sensitivity to dopamine with extended oxidation scan limits. J. Neurosci. Methods 33, 41–49.

    Article  PubMed  CAS  Google Scholar 

  13. Marsden, C. A., Joseph, M. H., Kruk, Z. L., et al. (1988) In vivo voltammetry—present electrodes and methods. Neuroscience 25, 389–400.

    Article  PubMed  CAS  Google Scholar 

  14. Millar, J., Stamford, J. A., Kruk, Z. L., and Wightman, R. M. (1985) Electrochemical, pharmacological and electrophysiological evidence of rapid dopamine release and removal in the rat caudate nucleus following electrical stimulation of the median forebrain bundle. Eur. J. Pharmacol. 109, 341–348.

    Article  PubMed  CAS  Google Scholar 

  15. Logman, M. J., Budygin, E. A., Gainetdinov, R. R., and Wightman, R. M. (2000) Quantitation of in vivo measurements with carbon fiber microelectrodes. J. Neurosci. Methods 95, 95–102.

    Article  PubMed  CAS  Google Scholar 

  16. Davidson, C., Ellinwood, E. H., Douglas, S. B., and Lee, T. H. (2000) Effect of cocaine, nomifensine, GBR 12909 and WIN 35428 on carbon fiber microelectrode sensitivity for voltammetric recording of dopamine. J. Neurosci. Methods 101, 75–83.

    Article  PubMed  CAS  Google Scholar 

  17. Phillips, P. E. M. and Stamford, J. A. (1999) Voltammogram “landscapes” aid detection and identification of in vivo electrochemical signals. Electroanalysis 11, 301–307.

    Article  CAS  Google Scholar 

  18. Michael, D., Travis, E. R., and Wightman, R. M. (1998) Color images for fast-scan CV. Analyt. Chem. 70, 586A–592A.

    Article  CAS  Google Scholar 

  19. Olds, J. and Milner, P. M. (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of the rat brain. J. Comp. Physiol. Psychol. 47, 419–427.

    Article  PubMed  CAS  Google Scholar 

  20. Fibiger, H. C., LePiane, F. G., Jakubovic, A., and Phillips, A. G. (1987) The role of dopamine in intracranial self-stimulation of the ventral tegmental area. J. Neurosci. 7, 3888–3896.

    PubMed  CAS  Google Scholar 

  21. Garris, P. A., Kilpatrick, M., Bunin, M. A., Michael, D., Walker, Q. D., and Wightman, R. M. (1999) Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398, 67–69.

    Article  PubMed  CAS  Google Scholar 

  22. Kilpatrick, M. R., Rooney, M. B., Michael, D. J., and Wightman, R. M. (2000) Extracellular dopamine dynamics in rat caudate-putamen during experimenter-delivered and intracranial self-stimulation. Neuroscience 96, 697–706.

    Article  PubMed  CAS  Google Scholar 

  23. Schultz, W., Dayan, P., and Montague, P. R. (1997) A neural substrate of prediction and reward. Science 275, 1593–1599.

    Article  PubMed  CAS  Google Scholar 

  24. Steffensen, S. C., Lee, R. S., Stobbs, S. H., and Henriksen, S. J. (2001) Responses of ventral tegmental area GABA neurons to brain stimulation reward. Brain Res. 906, 190–197.

    Article  PubMed  CAS  Google Scholar 

  25. Grace, A. A. (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41, 1–24.

    Article  PubMed  CAS  Google Scholar 

  26. Overton, P. G. and Clark, D. (1997) Burst firing in midbrain dopaminergic neurons. Brain Res. Rev. 25, 312–334.

    Article  PubMed  CAS  Google Scholar 

  27. Gratton, A. and Wise, R. A. (1994) Drug-and behavior-associated changes in dopamine-related electrochemical signals during intravenous cocaine self-administration in rats. J. Neurosci. 14, 4130–4146.

    PubMed  CAS  Google Scholar 

  28. Wise, R. A., Newton, P., Leeb, K., Burnette, B., Pocock, D., and Justice, J. B., Jr. (1995) Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology 120, 10–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Phillips, P.E.M., Robinson, D.L., Stuber, G.D., Carelli, R.M., Wightman, R.M. (2003). Real-Time Measurements of Phasic Changes in Extracellular Dopamine Concentration in Freely Moving Rats by Fast-Scan Cyclic Voltammetry. In: Wang, J.Q. (eds) Drugs of Abuse. Methods In Molecular Medicine™, vol 79. Humana Press. https://doi.org/10.1385/1-59259-358-5:443

Download citation

  • DOI: https://doi.org/10.1385/1-59259-358-5:443

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-057-1

  • Online ISBN: 978-1-59259-358-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics