Advertisement

The Temporal Sequence of Changes in Gene Expression by Drugs of Abuse

  • Peter W. Kalivas
  • Shigenobu Toda
  • M. Scott Bowers
  • David A. Baker
  • M. Behnam Ghasemzadeh
Part of the Methods In Molecular Medicine™ book series (MIMM, volume 79)

Abstract

Addiction is a complex maladaptive behavior produced by repeated exposure to rewarding stimuli (1). There are two primary features of addiction to all forms of natural and pharmacological stimuli. First, the rewarding stimulus associated with the addiction is a compelling motivator of behavior at the expense of behaviors leading to the acquisition of other rewarding stimuli. Thus, individuals come to orient increasing amounts of their daily activity around acquisition of the rewarding stimulus to which they are addicted. Second, there is a persistence of craving for the addictive stimulus, combined with an inability to regulate the behaviors associated with obtaining that stimulus. Thus, years after the last exposure to an addictive stimulus, reexposure to that stimulus or environmental cues associated with that stimulus will elicit behavior seeking to obtain the reward.

Keywords

Nucleus Accumbens Ventral Tegmental Area Immediate Early Gene Ventral Mesencephalon Rewarding Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    O’Brien, C. (2001) Drug addiction and drug abuse, in The Pharmacological Basis of Therapeutics (Hardman, J., Limbird, L., and Gilman, A. G., eds.) McGraw-Hill, New York, pp. 621–642.Google Scholar
  2. 2.
    Koshiya, K. and Kato, T. (1983) Acute changes in nigral substance P content induced by drugs acting on dopamine, muscarine and GABA receptors. Naunyn Schmiedebergs Arch. Pharmacol. 324, 223–227.PubMedCrossRefGoogle Scholar
  3. 3.
    Unterwald, E. M., Cox, B. M., Kreek, M. J., Cote, T. E., and Izenwasser, S. (1993) Chronic repeated cocaine administration alters basal and opioid-regulated adenylyl cyclase activity. Synapse 15, 33–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Pierce, R. C. and Kalivas, P. W. (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res. Rev. 25, 192–216.PubMedCrossRefGoogle Scholar
  5. 5.
    Volkow, N. D. and Fowler, J. S. (2000) Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb. Cortex 10, 318–325.PubMedCrossRefGoogle Scholar
  6. 6.
    Grant, S., London, E. D., Newlin, D. B., et al. (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc. Natl. Acad. Sci. USA 93, 12040–12045.PubMedCrossRefGoogle Scholar
  7. 7.
    Childress, A. R., Mozley, P. D., McElgin, W., Fitzgerald, J., Reivich, M., and O’Brien, C. P. (1999) Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry 156, 11–18.PubMedGoogle Scholar
  8. 8.
    White, F. J. and Kalivas, P. W. (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend. 51, 141–154.PubMedCrossRefGoogle Scholar
  9. 9.
    Daunais, J. and McGinty, J. F. (1996) The effects of D1 or D2 dopamine receptor blockade on zif/268 and preprodynorphin gene expression in rat forebrain following a short-term cocaine binge. Mol. Brain Res. 354, 237–248.CrossRefGoogle Scholar
  10. 10.
    Moratalla, R., Vickers, E. A., Robertson, H. A., Cochran, B. H., and Graybiel, A. M. (1993) Coordinate expression of c-fos and jun B is induced in the rat striatum by cocaine. J. Neurosci. 13, 423–433.PubMedGoogle Scholar
  11. 11.
    Lanahan, A. and Worley, P. (1998) Immediate-early genes and synaptic function. Neurobiol. Learn. Mem. 70, 37–43.PubMedCrossRefGoogle Scholar
  12. 12.
    Vrana, S. L., Vrana, K. E., Koves, T. R., Smith, J. E., and Dworkin, S. I. (1993) Chronic cocaine administration increases CNS tyrosine hydroxylase enzyme activity and mRNA levels and tryptophan hydroxylase enzyme activity levels. J. Neurochem. 61, 2262–2268.PubMedCrossRefGoogle Scholar
  13. 13.
    Sorg, B. A., Chen, S. Y., and Kalivas, P. W. (1993) Time course of tyrosine hydroxylase expression following behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther. 266, 424–430.PubMedGoogle Scholar
  14. 14.
    Xia, Y., Goebel, D. J., Kapatos, G., and Bannon, M. J. (1992) Quantitation of rat dopamine transporter mRNA: effects of cocaine treatment and withdrawal. J. Neurochem. 59, 1179–1182.PubMedCrossRefGoogle Scholar
  15. 15.
    Nestler, E. J., Terwilliger, R. Z., Walker, J. R., Sevarino, K. A., and Duman, R. S. (1990) Chronic cocaine treatment decreases levels of the G protein subunits G and G in discrete regions of rat brain. J. Neurochem. 55, 1079–1082.PubMedCrossRefGoogle Scholar
  16. 16.
    Fitzgerald, L. W., Ortiz, J., Hamedani, A. G., and Nestler, E. J. (1996) Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptions among cross-sensitizing agents. J. Neurosci. 16, 274–282.PubMedGoogle Scholar
  17. 17.
    Churchill, L., Swanson, C. J., Urbina, M., and Kalivas, P. W. (1999) Repeated cocaine alters glutamate receptor subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization. J. Neurochem. 72, 2397–2403.PubMedCrossRefGoogle Scholar
  18. 18.
    Wolf, M. E., White, F. J., Nassar, R., Brooderson, R. J., and Khansa, M. R. (1993) Differential development of autoreceptor subsensitivity and enhanced dopamine release during amphetamine sensitization. J. Pharmacol. Exp. Ther. 264, 249–255.PubMedGoogle Scholar
  19. 19.
    White, F. J., Hu, X. T., Zhang, X. F., and Wolf, M. E. (1995) Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J. Pharmacol. Exp. Ther. 273, 445–454.PubMedGoogle Scholar
  20. 20.
    White, F. J., et al. (1995) Neurophysiological alterations in the mesocorticolimbic dopamine system during repeated cocaine administration., in The Neurobiology of Cocaine Addiction (Hammer, R., ed.), CRC Press, Boca Raton, FL, pp. 99–120.Google Scholar
  21. 21.
    Kalivas, P. W. and Duffy, P. (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. II. Dopamine perikarya. J. Neurosci. 13, 276–284.PubMedGoogle Scholar
  22. 22.
    Kalivas, P. W. and Duffy, P. (1998) Repeated cocaine administration alters extracellular glutamate in the ventral tegmental area. J. Neurochem. 70, 1497–1502.PubMedCrossRefGoogle Scholar
  23. 23.
    Bonci, A. and Williams, J. T. (1996) A common mechanism mediates long-term changes in synaptic transmission after chronic cocaine and morphine. Neuron 16, 631–639.PubMedCrossRefGoogle Scholar
  24. 24.
    Nestler, E. (2001) Molecular basis of long-term plasticity underlying addiction. Nat. Rev. 2, 119–128.CrossRefGoogle Scholar
  25. 25.
    Nestler, E. J., Barrot, M., and Self, D. W. (2001) DeltaFosB: a sustained molecular switch for addiction. Proc. Natl. Acad. Sci. USA 98, 11042–11046.PubMedCrossRefGoogle Scholar
  26. 26.
    Moratalla, R., Elibol, B., Vallejo, M., and Graybiel, A. M. (1996) Network-level changes in expression of inducible fos-jun proteins in the striatum during chronic cocaine treatment and withdrawal. Neuron 17, 147–156.PubMedCrossRefGoogle Scholar
  27. 27.
    Hurd, Y. L. and Herkenham, M. (1993) Molecular alterations in the neostriatum of human cocaine addicts. Synapse 13, 357–369.PubMedCrossRefGoogle Scholar
  28. 28.
    Kelz, M. B., Chen, J., Carlezon, W. A., Jr., et al. (1999) Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature 401, 272–276.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang, X. F., Hu, X. T., and White, F. J. (1998) Whole-cell plasticity in cocaine withdrawal: reduced sodium current in nucleus accumbens neurons. J. Neurosci. 18, 488–498.PubMedGoogle Scholar
  30. 30.
    Swanson, C. J., Baker, D. A., Carson, D., Worley, P. F., and Kalivas, P. W. (2001) Repeated cocaine administration attenuates group I metabotropic glutamate receptor-mediated glutamate release and behavioral activation: a potential role for Homer 1b/c. J. Neurosci. 21, 9043–9052.PubMedGoogle Scholar
  31. 31.
    Chiamulera, C., Epping-Jordan, M. P., Zocchi, A., et al. (2001) Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat. Neurosci. 4, 873–874.PubMedCrossRefGoogle Scholar
  32. 32.
    Kubota, Y., Ito, C., Kuramasu, A., Sato, M., and Watanabe, T. (1999) Transient increases of histamine H1 and H2 receptor mRNA levels in the rat striatum after the chronic administration of methamphetamine. Neurosci. Lett. 275, 37–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Ito, C., Onodera, K., Sakurai, E., Sato, M., and Watanabe, T. (1997) Effect of cocaine on the histaminergic neuron system in the rat brain. J. Neurochem. 69, 875–878.PubMedCrossRefGoogle Scholar
  34. 34.
    Henry, D. J. and White, F. J. (1995) The persistence of behavioral sensitization to cocaine parallels enhanced inhibition of nucleus accumbens neurons. J. Neurosci. 15, 6287–6299.PubMedGoogle Scholar
  35. 35.
    Manzoni, O., Pujalte, D., Williams, J., and Bockaert, J. (1998) Decreased presynaptic sensitivity to adenosine after cocaine withdrawal. J. Neurosci. 18, 7996–8002.PubMedGoogle Scholar
  36. 36.
    Pierce, R., Pierce-Bancroft, A., and Prasad, B. (2000) Neurotrophin-mediated second messengers contribute to the initiation of behavioral sensitization to cocaine. J. Neurosci. 20, 1–34.Google Scholar
  37. 37.
    Haile, C. N., Hiroi, N., Nestler, E. J., and Kosten, T. A. (2001) Differential behavioral responses to cocaine are associated with dynamics of mesolimbic dopamine proteins in Lewis and Fischer 344 rats. Synapse 41, 179–190.PubMedCrossRefGoogle Scholar
  38. 38.
    Cha, X. Y., Pierce, R. C., Kalivas, P. W., and Mackler, S. A. (1997) NAC-1, a rat brain mRNA, is increased in the nucleus accumbens three weeks after chronic cocaine self-administration. J. Neurosci. 17, 6864–6871.PubMedGoogle Scholar
  39. 39.
    Mackler, S. A., Korutla, L., Cha, X. Y., Koebbe, M. J., Fournier, K. M., Bowers, M.S., and Kalivas, P. (2000) NAC-1 is a brain POZ/BTB protein that can prevent cocaine-induced sensitization in the rat. J. Neurosci. 20, 6210–6217.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Peter W. Kalivas
    • 1
  • Shigenobu Toda
    • 1
  • M. Scott Bowers
    • 1
  • David A. Baker
    • 1
  • M. Behnam Ghasemzadeh
    • 1
  1. 1.Department of Physiology and NeuroscienceMedical University of South CarolinaCharleston

Personalised recommendations