Skip to main content

Functional Analysis of the Antimitogenic Activity of Tumor Suppressors

  • Protocol
Cancer Cell Signaling

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 218))

  • 939 Accesses

Abstract

Loss of tumor suppressors contributes to numerous cancer types. Many, but not all, proteins encoded by tumor suppressor genes have antiproliferative activity and halt cell-cycle progression. In this chapter, we present three methods that have been utilized to monitor the antimitogenic action exerted by tumor suppressors. Tumor suppressor function can be demonstrated by colony formation assays and acquisition of the flat-cell phenotype. Because of the antiproliferative action of these agents, we also present two transient assays that monitor the effect of tumor suppressors on cell-cycle progression. One is based on BrdU incorporation (i.e., DNA replication) and the other on flow cytometry. Together, this triad of techniques is sufficient to determine the action of tumor suppressors and other antiproliferative agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knudson, A. G. (1993) Antioncogenes and human cancer. Proc. Natl. Acad. Sci. USA 90, 10,914–10,921.

    Article  PubMed  CAS  Google Scholar 

  2. Weinberg, R. A. (1995) The retinoblastoma protein and cell cycle control. Cell 81, 323–30.

    Article  PubMed  CAS  Google Scholar 

  3. Macleod, K. (2000) Tumor suppressor genes. Curr. Opin. Genet. Dev. 10, 81–93.

    Article  PubMed  CAS  Google Scholar 

  4. Cavenee, W. K., Dryja, T. P., Phillips, R. A., Benedict, W. F., Godbout, R., Gallie, B. L., et al. (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–784.

    Article  PubMed  CAS  Google Scholar 

  5. Friend, S. H., Bernards, R., Rogelj, S., Weinberg, R. A., Rapaport, J. M., Albert, D. M., and Dryja, T. P. (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646.

    Article  PubMed  CAS  Google Scholar 

  6. Lee, W. H., Bookstein, R., Hong, F., Young, L. J., Shew, J. Y., and Lee, E. Y. (1987) Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235, 1394–1329.

    Article  PubMed  CAS  Google Scholar 

  7. Sherr, C. J. (1996) Cancer cell cycles. Science 274, 1672–1677.

    Article  PubMed  CAS  Google Scholar 

  8. Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  9. Evan, G. I. and Vousden, K. H. (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348.

    Article  PubMed  CAS  Google Scholar 

  10. Peltomaki, P. (2001) Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum. Mol. Genet. 10, 735–740.

    Article  PubMed  CAS  Google Scholar 

  11. Kolodner, R. D. (1995) Mismatch repair: mechanisms and relationship to cancer susceptibility. Trends Biochem. Sci. 20, 397–401.

    Article  PubMed  CAS  Google Scholar 

  12. Kinzler, K. W. and Vogelstein, B. (1996) Lessons from hereditary colorectal cancer. Cell 87, 159–170.

    Article  PubMed  CAS  Google Scholar 

  13. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88, 323–331.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, J. Y., Knudsen, E. S., and Welch, P. J. (1994) The retinoblastoma tumor suppressor protein. Adv. Cancer Res. 64, 25–85.

    Article  PubMed  CAS  Google Scholar 

  15. Arap, W., Knudsen, E., Sewell, D. A., Sidransky, D., Wang, J. Y., Huang, H. J., and Cavenee, W. K. (1997) Functional analysis of wild-type and malignant glioma derived CDKN2Abeta alleles: evidence for an RB-independent growth suppressive pathway. Oncogene 15, 2013–2020.

    Article  PubMed  CAS  Google Scholar 

  16. Arap, W., Knudsen, E. S., Wang, J. Y., Cavenee, W. K., and Huang, H. J. (1997) Point mutations can inactivate in vitro and in vivo activities of p16(INK4a)/CDKN2A in human glioma. Oncogene 14, 603–609.

    Article  PubMed  CAS  Google Scholar 

  17. Hinds, P. W., Mittnacht, S., Dulic, V., Arnold, A., Reed, S. I., and Weinberg, R. A. (1992) Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70, 993–1006.

    Article  PubMed  CAS  Google Scholar 

  18. Templeton, D. J., Park, S. H., Lanier, L., and Weinberg, R. A. (1991) Nonfunctional mutants of the retinoblastoma protein are characterized by defects in phosphorylation, viral oncoprotein association, and nuclear tethering. Proc. Natl. Acad. Sci. USA 88, 3033–3037.

    Article  PubMed  CAS  Google Scholar 

  19. Knudsen, K. E., Weber, E., Arden, K. C., Cavenee, W. K., Feramisco, J. R., and Knudsen, E. S. (1999) The retinoblastoma tumor suppressor inhibits cellular proliferation through two distinct mechanisms: inhibition of cell cycle progression and induction of cell death. Oncogene 18, 5239–45.

    Article  PubMed  CAS  Google Scholar 

  20. Qin, X. Q., Chittenden, T., Livingston, D. M., and Kaelin, W. G. Jr. (1992) Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 6, 953–964.

    Article  PubMed  CAS  Google Scholar 

  21. Knudsen, E. S., Pazzagli, C., Born, T. L., Bertolaet, B. L., Knudsen, K. E., Arden, K. C., et al. (1998) Elevated cyclins and cyclin-dependent kinase activity in the rhabdomyosarcoma cell line RD. Cancer Res. 58, 2042–2049.

    PubMed  CAS  Google Scholar 

  22. Knudsen, E. S., Buckmaster, C., Chen, T. T., Feramisco, J. R., and Wang, J. Y. (1998) Inhibition of DNA synthesis by RB: effects on G1/S transition and S-phase progression. Genes Dev. 12, 2278–2292.

    Article  PubMed  CAS  Google Scholar 

  23. Knudsen, K. E., Fribourg, A. F., Strobeck, M. W., Blanchard, J. M., and Knudsen, E. S. (1999) Cyclin A is a functional target of retinoblastoma tumor suppressor protein-mediated cell cycle arrest. J. Biol. Chem. 274, 27,632–27,641.

    Article  PubMed  CAS  Google Scholar 

  24. Agami, R. and Bernards, R. (2000) Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell 102, 55–66.

    Article  PubMed  CAS  Google Scholar 

  25. Zhu, L., van den Heuvel, S., Helin, K., Fattaey, A., Ewen, M., Livingston, D., et al. (1993) Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. Genes Dev. 7, 1111–1125.

    Article  PubMed  CAS  Google Scholar 

  26. Kanda, T., Sullivan, K. F., and Wahl, G. M. (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385.

    Article  PubMed  CAS  Google Scholar 

  27. Morgenstern, J. P. and Land, H. (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Knudsen, E.S., Angus, S.P. (2003). Functional Analysis of the Antimitogenic Activity of Tumor Suppressors. In: Terrian, D.M. (eds) Cancer Cell Signaling. Methods in Molecular Biology™, vol 218. Humana Press. https://doi.org/10.1385/1-59259-356-9:03

Download citation

  • DOI: https://doi.org/10.1385/1-59259-356-9:03

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-075-5

  • Online ISBN: 978-1-59259-356-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics