Measurements of Phospholipases A2, C, and D (PLA2, PLC, and PLD)

In Vitro Microassays, Analysis of Enzyme Isoforms, and Intact-Cell Assays
  • Julian Gomez-Cambronero
  • Joel Horwitz
  • Ramadan I. Sha’afi
Part of the Methods in Molecular Biology™ book series (MIMB, volume 218)


In order to be properly divisible, the cell membrane has to be remodeled and intracellular membranes must be converted into a vesiculated state prior to mitosis. Phospholipases A2, C, and D (PLA2, PLC, and PLD) are involved in regulatory events of intracellular mitogen signaling pathways. We describe here three methods for comprehensively assaying those phospholipases: 1) in vitro microassays, in which a radiolabeled substrate is exogenously added to cell lysates to measure the enzyme activity(ies); 2) immunocomplex assays, in which immunoprecipitation with a specific antibody is performed in order to study the contribution of a particular isoform within a family of enzymes; and 3) intact-cell or in vivo assays, in which cells are labeled with a radioactive substrate until steady state is reached. The uniqueness of the in vitro microassay method described here for the first time is that it allows the measurement of, in parallel, the activities of three phospholipases utilizing aliquots derived from the same biological sample. The approach for immunoprecipitation described in this chapter can be extrapolated to the study of a large array of enzyme isoforms. Finally, the intact-cell assays allow for the accurate measurement of receptor-mediated activation in vivo.

Key Words

Phospholipase in vitro assay PLA2 PLC PLD immunocomplex enzymatic reaction 


  1. 1.
    Jalink, K., van Corven, E. J., and Moolenaar, W. H. (1990) Lysophosphatidic acid, but not phosphatidic acid, is a potent Ca2+-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action. J. Biol. Chem. 265, 12,232–12,239.PubMedGoogle Scholar
  2. 2.
    Venable, M. and Obeid, L. M. (1999) Phospholipase D in cellular senescence. Biochim. Biophys. Acta 1439, 291–298.PubMedGoogle Scholar
  3. 3.
    Griffiths, R. J. (1999) Prostaglandins and inflammation, in Inflammation: Basic Principles and Clinical Correlates, Chapter 22, 3rd edition, (Gallin, J. I. and Snyderman, R., eds.), Williams & Wilkins, Philadelphia, PA, pp. 349–360.Google Scholar
  4. 4.
    Nishizuka, Y. (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607–614.PubMedGoogle Scholar
  5. 5.
    Berridge, M. J. (1993) Inositol trisphosphate and calcium signaling. Nature 361, 315–325.PubMedGoogle Scholar
  6. 6.
    Jimenez, B., del Peso, L., Montaner, S., Esteve, P., and Lacal, J. C. (1995) Generation of phosphorylcholine as an essential event in the activation of Raf-1 and MAP-kinases in growth factors-induced mitogenic stimulation. J. Cell Biochem. 57, 141–149.PubMedGoogle Scholar
  7. 7.
    van Dijk, M. C., Hilkmann, H., and van Blitterswijk, W. J. (1997) Platelet-derived growth factor activation of mitogen-activated protein kinase depends on the sequential activation of phosphatidylcholine-specific phospholipase C, protein kinase C-ζ and Raf-1. Biochem J. 325, 303–307.PubMedGoogle Scholar
  8. 8.
    Kiss, Z. and Mukherjee, J. J. (1997) Phosphocholine and sphingosine-1-phosphate synergistically stimulate DNA synthesis by a MAP kinase-dependent mechanism. FEBS Lett. 412, 197–200.PubMedGoogle Scholar
  9. 9.
    Moolenaar, W. H., Kruijer, W., Tilly, B. C., Verlaan, I., Bierman, A. J., and de Laat, S. W. (1986) Growth factor-like action of phosphatidic acid. Nature 323, 171–173.PubMedGoogle Scholar
  10. 10.
    Kaszkin, M., Richards, J., and Kinzel, V. (1996) Phosphatidic acid mobilized by phospholipase D is involved in the phorbol 12-myristate 13-acetate-induced G2 delay of A431 cells. Biochem. J. 314, 129–138.PubMedGoogle Scholar
  11. 11.
    Carnero, A. J. and Lacal, J. C. (1993) Phospholipase-induced maturation of Xenopus laevis oocytes: mitogenic activity of generated metabolites. J. Cell. Biochem. 52, 440–448.PubMedGoogle Scholar
  12. 12.
    Kaszkin, M. (1992) Proposed role of phosphatidic acid in the extracellular control of the transition from G2 phase to mitosis exerted by epidermal growth factor in A431 cells. Cancer Res. 52, 5627–5634.PubMedGoogle Scholar
  13. 13.
    Carnero, A., Cuadrado, A., del Peso, L., and Lacal, J. C. (1994) Activation of type D phospholipase by serum stimulation and Ras-induced transformation in NIH3T3 cells. Oncogene 9, 1387–1395.PubMedGoogle Scholar
  14. 14.
    Kiss, Z. and Crilly, K. S. (1996) Ethanolamine analogues stimulate DNA synthesis by a mechanism not involving phosphatidylethanolamine synthesis. FEBS Lett. 381, 67–70.PubMedGoogle Scholar
  15. 15.
    Andrews, B., Bond, K., Lehman, J. A., Horn, J. M., Dugan, A., and Gomez-Cambronero, J. (2000) Direct inhibition of in vitro PLD activity by 4-(2-aminoethyl)-benzenesulfonyl fluoride. Biochem. Biophys. Res. Com. 273, 302–311.PubMedGoogle Scholar
  16. 16.
    Lin, L. L., Lin, A. Y., and Knopf, J. L. (1992) Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid. Proc. Natl. Acad. Sci. USA 89, 6147–6151.PubMedGoogle Scholar
  17. 17.
    Leslie, C. C. (1997) Properties and regulation of cytosolic phospholipase A2. J. Biol. Chem. 272, 6709–16712.Google Scholar
  18. 18.
    Piomelli, D. (1993) Arachidonic acid in cell signaling. Current Opinion Cell Biol. 5, 274–280.PubMedGoogle Scholar
  19. 19.
    Hajjar, J.-J., Rezaul, K., and Shá;afi, R. I. (2000) Cytosolic phospholipase A2 and arachidonic acid release. Current Top. Biochem. Res. 3, 1–25.Google Scholar
  20. 20.
    Borsch-Haubold, A. G., Kramer, R. M., and Watson, S. P. (1995) Cytosolic phospholipase A2 is phosphorylated in collagen-and thrombin-stimulated human platelets independent protein kinase C and mitogen-activated protein kinase. J. Biol. Chem. 270, 25,885–25,892.PubMedGoogle Scholar
  21. 21.
    Kramer, R. M., Roberts, E. F., Hyslop, P. A., Utterback, B. G., Hui, K. Y., and Jakubowski, J. A. (1995) Differential activation of cytosolic phospholipase A2 (cPLA2) by thrombin and thrombin receptor agonist peptide in human platelets. J. Biol. Chem. 270, 14,816–14,823.PubMedGoogle Scholar
  22. 22.
    Waterman, W. H., Molski, T. F. P., Huang, C.-K., Adams, J. L., and Sháafi, R. I. (1996) TNF-α-induced phosphorylation and activation of cytosolic phospholipase A2 are abrogated by an inhibitor of the p38 MAP kinase cascade in human neutrophils. Biochem. J. 319, 17–20.PubMedGoogle Scholar
  23. 23.
    Muthalif, M. M., Hefner, Y., Harper, J., Parmentier, J. H., Achersold, R., Gelb, M. H., and Malik, K. U. (2001) Functional interaction of calcium/calmodulin-dependent protein kinase II and cytosolic phospholipase A2. J. Biol. Chem. 298, 272–278.Google Scholar
  24. 24.
    Nahas, N., Waterman, W. H., and Sháafi, R. I. (1996) Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes phosphorylation and an increase in the activity of cytosolic phospholipase A2 in human neutrophils. Biochem. J. 313, 503–508.PubMedGoogle Scholar
  25. 25.
    Van Den Bosch, H., De Jong, J. G. N., and Aarsman, A. J. (1991) Phospholipase A2 from rat liver mitochondria. Methods Enzymol. 197, 365–376.PubMedGoogle Scholar
  26. 26.
    Waite, M. and Smith, D. (1992) Phosphatidylinositol hydrolysis by and phospholipase A2 and C activities in human peripheral blood neutrophils. J. Leukocyte Biol. 52, 670–678.PubMedGoogle Scholar
  27. 27.
    Davis, L. L., Maglio, J. J., and Horwitz, J. (1998) Phospholipase D hydrolyzes short-chain analogs of phosphatidylcholine in the absence of detergent. Lipids 33, 223–227.PubMedGoogle Scholar
  28. 28.
    Horn, J. M., Lehman, J. A., Alter, G., Horwitz, J., and Gomez-Cambronero, J. (2001) Presence of a phospholipase D (PLD) distinct from PLD1 or PLD2 in human neutrophils: immunobiochemical characterization and initial purification. Biochim. Biophys. Acta 1530, 97–110.Google Scholar
  29. 29.
    Blum, J. J., Lehman, J. A., Horn, J. M., and Gomez-Cambronero, J. (2001) Phospholipase D (PLD) is present in Leishmania donovani and its activity increases in response to acute osmotic stress. J. Eukaryotic Mic. 48, 102–110.Google Scholar
  30. 30.
    Rhe, S. G. and Bae, Y. S. (1997) Regulation of phosphoinositide-specific phospholipase C. J. Biol. Chem. 272, 15,045–15,048.Google Scholar
  31. 31.
    Syrbu, S. I., Waterman, W. H., Molski, T. F. P., Nagarkatti, D., Hajjar, J.-J., and Sháafi, R. I. (1999) Phosphorylation of cytosolic phospholipase A2 and the release of arachidonic acid in human neutrophils. J. Immunol. 162, 2334–2340.PubMedGoogle Scholar
  32. 32.
    Volpi, M., Yassin, R., Tao, W., Molski, T. F. P., Naccache, P. H., and Sháafi, R. I. (1984) Leukotriene mobilizes calcium without the breakdown of polyphosphoinositides and the production of phosphatidic acid in rabbit neutrophils. Proc. Natl. Acad. Sci. USA 81, 5966–5969.PubMedGoogle Scholar
  33. 33.
    Volpi, M., Yassin, R., Naccache, P. H., and Sháafi, R. I. (1983) Chemotactic factor causes rapid decrease in phosphatidylinositol 4,5-bisphosphate and phosphatidyl inositol 4 monophosphate in rabbit neutrophils. Biochem. Biophys. Res. Com. 112, 957–964.PubMedGoogle Scholar
  34. 34.
    Hara, A. and Radin, N. (1978) Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 90, 420–426.PubMedGoogle Scholar
  35. 35.
    Bell, M. E., Peterson, R. G., and Eichberg, J. (1982) Metabolism of phospholipids in peripheral nerve from rats with chronic streptozotocin-induced diabetes: Increased turnover of phosphatidylinositol-4,5-bisphosphate. J. Neurochem. 39, 192–200.PubMedGoogle Scholar
  36. 36.
    Levine, G., Maglio, J., and Horwitz, J. (2000) Differential effects of long-term ethanol on signal transduction in PC12 cells. Alcoholism: Exp. Clinical Res. 24, 93–101.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Julian Gomez-Cambronero
    • 1
  • Joel Horwitz
    • 2
  • Ramadan I. Sha’afi
    • 3
  1. 1.Department of Physiology and BiophysicsWright State University School of MedicineDayton
  2. 2.Department of Pharmacology and PhysiologyMCP Hahnemann UniversityPhiladelphia
  3. 3.Department of PhysiologyUniversity of Connecticut Health CenterFarmington

Personalised recommendations