Skip to main content

Modification of In Vivo Cardiac Performance by Intracoronary Gene Transfer of β-Adrenergic Receptor Signaling Components

  • Protocol
  • 372 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 219))

Abstract

Alterations in β-adrenergic receptor (βAR) signaling typically occur in cardiomyocytes from hearts progressing toward failure (1). Regulation of G-protein-coupled βARs mostly involves phosphorylation of agonist-occupied receptors by a βAR kinase (βARK1), leading to desensitization. This process also requires a second protein, β-arrestin, which binds to phosphorylated receptors and sterically interdicts further coupling. βARK1, also known as GRK2, is primarily a cytosolic enzyme that must translocate to the membrane in order to phosphorylate its receptor substrate. This is accomplished through a direct physical interaction between the GRK and the βγ-subunits of G-proteins (Gβγ) (2,3). The Gβγ-binding site on βARK1 has been mapped to a region located toward the carboxyl terminus of the enzyme, and a peptide derived from this region (βARKct) can act as an effective in vivo βARK1 inhibitor. The βARKct represents the last 194 amino acids of βARK1 containing the Gβγ-binding domain (2) and has been utilized in transgenic mice to inhibit the in vivo activity of βARK1 (4). Moreover, these mice present with enhanced cardiac contractility that has led to the rescue of several mouse models of cardiomyopathy (4,5).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Brodde, O. E. (1993) Beta-adrenoceptors in cardiac disease. Pharmacol. Ther. 60, 405–430.

    Article  PubMed  CAS  Google Scholar 

  2. Koch, W. J., Inglese, J., Stone, W. C., and Lefkowitz, R. J. (1993) The binding site for the βγsubunits of heterotrimeric G proteins on the β-adrenergic receptor kinase. J. Biol. Chem. 268, 8256–8260.

    PubMed  CAS  Google Scholar 

  3. Pitcher, J. A., Inglese, J., Higgins, J. B., et al. (1992) Role of βγ-subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane-bound receptors. Science 257, 1264–1267.

    Article  PubMed  CAS  Google Scholar 

  4. Koch, W. J., Rockman, H. A., Samama, P., et al. (1995) Cardiac function in mice overexpressing the β-adrenergic receptor kinase or a βARK inhibitor. Science 268, 1350–1353.

    Article  PubMed  CAS  Google Scholar 

  5. Koch, W. J., Lefkowitz, R. J., and Rockman, H. A. (2000) Functional consequences of altering myocardial adrenergic receptor signaling. Annu. Rev. Physiol. 62, 237–260.

    Article  PubMed  CAS  Google Scholar 

  6. Milano, C. A., Allen, L. F., Rockman, H. A., et al. (1994) Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science 264, 582–586.

    Article  PubMed  CAS  Google Scholar 

  7. Liggett, S. B., Tepe, N. M., Lorenz, J. N., et al. (2000) Early and delayed consequences of β2-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 101, 1707–1714.

    PubMed  CAS  Google Scholar 

  8. Dorn, G. W. 2nd, Tepe, N. M., Lorenz, J. N., Koch, W. J., and Ligett, S. B. (1999) Low-and high-level transgenic expression of β2-adrenergic receptor differentially affect cardiac hypertrophy and function in Galphaq-overexpressing mice. Proc. Natl. Acad. Sci. USA 96, 6400–6405.

    Article  PubMed  CAS  Google Scholar 

  9. Engelhardt, S., Hein, L., Wiesmann, F., and Lohse, M. J. (1999) Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc. Natl. Acad. Sci. USA 96, 7059–7064.

    Article  PubMed  CAS  Google Scholar 

  10. Lefkowitz, R. J., Rockmann, H. A., and Koch, W. J. (2000) Catecholamines, cardiac β-adrenergic receptors, and heart failure. Circulation 101, 1707–1714.

    Google Scholar 

  11. Maurice, J. P., Hata, J. A., Shah, A. S., et al. (1999) Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary β2-adrenergic receptor gene delivery. J. Clin. Invest. 104, 21–29.

    Article  PubMed  CAS  Google Scholar 

  12. Shah, A. S., Lilly, R. E., Kypson, A. P., et al. (2000) Intracoronary adenovirusmediated delivery and overexpression of the β2-adrenergic receptor in the heart: prospects for molecular ventricular assistance. Circulation 101, 408–414.

    PubMed  CAS  Google Scholar 

  13. White, D. C., Hata, J. A., Shah, A. S., Glower, D. D., Lefkowitz, R. J., and Koch, W. J. (2000) Preservation of myocardial β-adrenergic receptor signaling delays the development of heart failure following myocardial infarction. Proc. Natl. Acad. Sci. USA 97, 5428–5433.

    Article  PubMed  CAS  Google Scholar 

  14. Shah, A. S., White, D. C., Emani, S., et al. (2001) In vivo ventricular gene delivery of a β-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 103, 1311–1316.

    Article  PubMed  CAS  Google Scholar 

  15. Kypson, A. P., Peppel, K., Akhter, S. A., et al. (1998) Ex vivo adenoviral-mediated gene transfer to the transplanted adult rat heart. J. Thorac. Cardiovasc. Surg. 115, 623–630.

    Article  PubMed  CAS  Google Scholar 

  16. Kypson, A. P., Hendrickson, S. C., Akhter, S. A., et al. (1999) Adenoviral-mediated gene transfer of the β2-adrenergic receptor to donor hearts enhances cardiac function. Gene Ther. 6, 1298–1284.

    Article  PubMed  CAS  Google Scholar 

  17. Shah, A. S., White, D. C., Tai, O., et al. (2000) Adenovirus-mediated genetic manipulation of the myocardial β-adrenergic signaling system in transplanted hearts. J. Thorac. Cardiovasc. Surg. 120, 581–588.

    Article  PubMed  CAS  Google Scholar 

  18. Hajjar, R. J., Schmidt, U., Matsui, T., et al. (1998) Modulation of ventricular function through gene transfer in vivo. Proc. Natl. Acad. Sci. USA 95, 5251–5256.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Tevaearai, H.T., Koch, W.J. (2003). Modification of In Vivo Cardiac Performance by Intracoronary Gene Transfer of β-Adrenergic Receptor Signaling Components. In: Metzger, J.M. (eds) Cardiac Cell and Gene Transfer. Methods in Molecular Biology, vol 219. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-350-X:219

Download citation

  • DOI: https://doi.org/10.1385/1-59259-350-X:219

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-994-0

  • Online ISBN: 978-1-59259-350-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics