Skip to main content

Gutted Adenoviral Vectors for Gene Transfer to Muscle

  • Protocol
Cardiac Cell and Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 219))

Abstract

Adenoviral vectors are a popular choice for gene transfer protocols because they are well characterized, have a relatively large cloning capacity (up to 36 kB), and can be grown to high titers (1013 particles/mL) (1). Despite these attributes, first-generation adenoviral vectors retain many viral genes that can elicit a strong immune response, severely limiting their utility for studies in vivo (2). Our laboratory and others have been developing “gutted” or helper-dependent adenoviruses, which lack all viral coding sequences and therefore should greatly enhance the persistence of the vector in vivo (3,4). We have used this technology to deliver to muscle full-length cDNAs of the largest known gene, dystrophin, under control of the mouse muscle creatine kinase enhancer plus promoter (46).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham, F. L. and Prevec, L. (1991) Manipulation of Adenovirus Vectors, in Methods in Molecular Biology, Vol. 7: Gene Transfer and Expression Protocols. (Murray, E. J., ed.), Humana, Totowa, pp. 109–128.

    Google Scholar 

  2. Yang, Y., Nunes, F. A., Berencsi, K., Furth, E. E., Gonczol, E., and Wilson, J. M. (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407–4411.

    Article  PubMed  CAS  Google Scholar 

  3. Kochanek, S., Clemens, P. R., Mitani, K., Chen, H.-H., Chan, S., and Caskey, C. T. (1996) A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and β-galactosidase. Proc. Natl. Acad. Sci. USA 93, 5731–5736.

    Article  PubMed  CAS  Google Scholar 

  4. Kumar-Singh, R. and Chamberlain, J. S. (1996) Encapsidated adenovirus minichromosomes allow delivery and expression of a 14 kb dystrophin cDNA to muscle cells. Hum. Mol. Genet. 5, 913–921.

    Article  PubMed  CAS  Google Scholar 

  5. Dello Russo, C, Scott, J., Hartigan-O’Connor, D., et al. (2002) Functional reversal of dystrophy in adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. In press.

    Google Scholar 

  6. Hauser, M. A., Amalfitano, A., Kumar-Singh, R., Hauschka, S. D. and Chamberlain, J. S. (1997) Improved adenoviral vectors for gene therapy of Duchenne muscular dystrophy. Neuromusc. Disord. 7, 277–283.

    Article  PubMed  CAS  Google Scholar 

  7. Temperley, S. M. and Hay, R. T. (1992) Recognition of the adenovirus type 2 origin of DNA replication by the virally encoded DNA polymerase and preterminal proteins. EMBO J. 11, 761–768.

    PubMed  CAS  Google Scholar 

  8. Schaack, J., Ho, W. Y., Freimuth, P., and Shenk, T. (1990) Adenovirus terminal protein mediates both nuclear matrix association and efficient transcription of adenovirus DNA. Genes Dev. 4, 1197–1208.

    Article  PubMed  CAS  Google Scholar 

  9. Grable, M. and Hearing, P. (1990) Adenovirus type 5 packaging domain is composed of a repeated element that is functionally redundant. J. Virol. 64, 2047–2056.

    PubMed  CAS  Google Scholar 

  10. Bett, A. J., Prevec, L., and Graham, F. L. (1993) Packaging capacity and stability of human adenovirus type 5 vectors. J. Virol. 67, 5911–5921.

    PubMed  CAS  Google Scholar 

  11. Parks, R. J. and Graham, F. L. (1997) A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging. J. Virol. 71, 3293–3298.

    PubMed  CAS  Google Scholar 

  12. Barjot, C., Hartigan-O’Connor, D. O., Scott, J. M., Salvatori, G., and Chamberlain, J. S. (2002) Packaging cell lines for gutted adenoviral vector growth using E1, E2b, and E3-deleted helper viruses. In press.

    Google Scholar 

  13. Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–72.

    Article  PubMed  CAS  Google Scholar 

  14. Amalfitano, A., Begy, C. R., and Chamberlain, J. S. (1996) Improved adenovirus packaging cell lines to support the growth of replication-defective gene-delivery vectors. Proc. Natl. Acad. Sci. USA 93, 3352–3356.

    Article  PubMed  CAS  Google Scholar 

  15. Amalfitano, A. and Chamberlain, J. S. (1997) Isolation and characterization of packaging cell lines that co-express the adenovirus E1, DNA polymerase, and preterminal proteins: implications for gene therapy. Gene Ther. 4, 258–263.

    Article  PubMed  CAS  Google Scholar 

  16. Hartigan-O’Connor, D., Amalfitano, A., and Chamberlain, J. S. (1999) Improved production of gutted adenovirus in cells expressing adenovirus preterminal protein and DNA polymerase. J. Virol. 73, 7835–7841.

    PubMed  Google Scholar 

  17. Hartigan-O’Connor, D., Barjot, C., Crawford, R. and Chamberlain, J. (2002) Efficient rescue of gutted adenovirus genomes allows rapid production of concentrated stocks without negative selection. Hum. Gene Ther. 13, 519–531.

    Article  PubMed  Google Scholar 

  18. Gerard, R. D. and Meidell, R. S. (1995) Adenovirus vectors, in DNA Cloning: a Practical Approach. (Hames, B., and Glover, D., eds.), Oxford University Press, Oxford, pp. 285–307.

    Google Scholar 

  19. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  20. Mittereder, N., March, K. L., and Trapnell, B. C. (1996) Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J. Virol. 70, 7498–7509.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Scott, J.M., Chamberlain, J.S. (2003). Gutted Adenoviral Vectors for Gene Transfer to Muscle. In: Metzger, J.M. (eds) Cardiac Cell and Gene Transfer. Methods in Molecular Biology, vol 219. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-350-X:19

Download citation

  • DOI: https://doi.org/10.1385/1-59259-350-X:19

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-994-0

  • Online ISBN: 978-1-59259-350-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics