Skip to main content

Theoretical and Technical Considerations for Gene Transfer into Vascularized Cardiac Transplants

  • Protocol
Cardiac Cell and Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 219))

Abstract

The transfer of genes encoding immunomodulatory agents into allografts holds promise as an inductive therapy in transplantation (reviewed in refs. 13). This approach is clinically applicable, since vascularized transplants are routinely perfused at the time of organ harvest and therefore may be transfected by perfusion. However, many fundamental aspects of this technology must be addressed before it may be optimally applied to clinical transplantation. For example, it has been suggested that immunosuppressive gene therapy may provide advantages over conventional immunosuppression (13). Notably, gene transfer should allow for the persistent, local release of the agent within the microenvironment of the graft, thereby negating the deleterious side effects of systemic immunosuppression. Although this feature of immunosuppressive gene transfer is attractive, it has not been validated. Indeed, adenovirus mediated transfer of CTLA4Ig in liver allografts results in readily detectable levels of the transgene product in the sera (4). Hence, local secretion of the transgene product may result in systemic immunosuppression and increased susceptibility to infections and neoplasia. This fundamental aspect of immunosuppressive gene therapy has not been fully addressed and should be rigorously investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knechtle, S. J. (1996) Gene therapy and transplantation—a brief review. Transplant. Proc. 28(suppl 1), 19–23.

    PubMed  CAS  Google Scholar 

  2. Bromberg, J. S., DeBruyne, L. A., Sung, R. S., and Qin, L. (2000) Gene transfer to facilitate transplantation, in Gene Therapy in Inflammatory Diseases (Evans, C. H. and Robbins, P. D., eds.), Birkhauser Verlag, Basel, pp. 163–204.

    Chapter  Google Scholar 

  3. Giannoukakis, N., Thomson, A. W., and Robbins, P. D. (1999) Gene therapy in transplantation. Gene Ther. 6, 1499–1511.

    Article  PubMed  CAS  Google Scholar 

  4. Olthoff, K. M., Judge, T. A., Gelman, A. E., et al. (1998) Adenovirus-mediated gene transfer into cold-preserved liver allografts: Survival pattern and unresponsiveness following transduction with CTLA4Ig. Nat. Med. 4, 194–200.

    Article  PubMed  CAS  Google Scholar 

  5. Blaese, R. M., Culver, K. W., Miller, A. D., et al. (1995) T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270, 475–480.

    Article  PubMed  CAS  Google Scholar 

  6. Riddell, S. R., Elliot, M., Lewinsohn, D. A., et al. (1996) T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat. Med. 2, 216–223.

    Article  PubMed  CAS  Google Scholar 

  7. Tripathy, S. K., Black, H. B., Goldwasser, E., and Leiden J. M. (1996) Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat. Med. 2, 545–550.

    Article  PubMed  CAS  Google Scholar 

  8. Kay, M. A., Landen, C. N., Rothenberg, S. R., et al. (1994) In vivo hepatic gene therapy: complete albeit transient correction of factor IX deficiency in hemophilia B dogs. Proc. Natl. Acad. Sci. USA 91, 2353–2357.

    Article  PubMed  CAS  Google Scholar 

  9. Connelly, S., Mount, J., Mauser, A., et al. (1996) Complete short-term correction of canine hemophilia A by in vivo gene therapy. Blood 88, 3846–3853.

    PubMed  CAS  Google Scholar 

  10. Kozarsky, K. F., McKinley, D. R., Austin, L. L., Raper, S. E., Raper, Stratford-Perricaudet, L. D., and Wilson, J. M. (1994) In vivo correction of low density lipoprotein receptor deficiency in the Watanabe heritable hyperlipidemic rabbit with recombinant adenoviruses. J. Biol. Chem. 269, 13,695–13,702.

    PubMed  CAS  Google Scholar 

  11. Yang, Y., Li, Q., Ertl, H. C. J., and Wilson, J. M. (1995) Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J. Virol. 69, 2004–2015.

    PubMed  CAS  Google Scholar 

  12. Yang, Y., Jooss, K. U., Su, Q., Ertl, H. C. J., and Wilson, J. M. (1996) Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther. 3, 137–44.

    PubMed  Google Scholar 

  13. Vilquin, J.-T., Guerette, B., Kinoshita, I., et al. (1995) FK506 immunosuppression to control the immune reactions triggered by first-generation adenovirus-mediated gene transfer. Hum. Gene Ther. 6, 1391–1401.

    Article  PubMed  CAS  Google Scholar 

  14. Lee, M. G., Abina, M. A., Haddada, H., and Perricaudet, M. (1995) The constitutive expression of the immunomodulatory gp 19k protein in E1-, E3-adenoviral vectors strongly reduces the host cytotoxic T cell response against the vector. Gene Ther. 2, 256–262.

    PubMed  CAS  Google Scholar 

  15. Ilan, Y., Droguett, G., Chowdhury, N. R., et al. (1997) Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression. Proc. Natl. Acad. Sci. USA 94, 2587–2592.

    Article  PubMed  CAS  Google Scholar 

  16. McCoy, R. D., Davidson, B. L., Roessler, B. J., Huffnagle, B. B., and Simon, R. H. (1995) Expression of human interleukin-1 receptor antagonist in mouse lungs using a recombinant adenovirus: effects on vector-induced inflammation. Gene Ther. 2, 437–442.

    PubMed  CAS  Google Scholar 

  17. Qin, L., Ding, Y., Pahud, D. R., Robson, N. D., Shaked, A., and Bromberg, J. S. (1997) Adenovirus-mediated gene transfer of viral IL-10 inhibits the immune response to both alloantigen and adenoviral antigen. Hum. Gene Ther. 8, 1365–1374.

    Article  PubMed  CAS  Google Scholar 

  18. Chan, S. Y., Louie, M. C., Piccotti, J. R., et al. (1998) Genetic vaccination-induced immune responsiveness to the HIV protein Rev: emergence of the IL-2 producing helper T lymphocyte. Hum. Gene Ther. 9, 2187–2196.

    Article  PubMed  CAS  Google Scholar 

  19. Chan, S. Y., Goodman, R. E., Szmuszkovicz, J. R., et al. (2000) DNA-liposome versus adenoviral mediated gene transfer of TGFβ1 in vascularized cardiac allografts: Differential sensitivity of CD4+ and CD8+ T cells to TGFβ1. Transplantion 70, 1292–1301.

    Article  CAS  Google Scholar 

  20. Kay, M. A., Glorioso, J. C., and Naldini, L. (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 7, 33–39.

    Article  PubMed  CAS  Google Scholar 

  21. Trono, D. (2000) Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther. 7, 20–23.

    Article  PubMed  CAS  Google Scholar 

  22. Monahan, P. E. and Samulski, R. J. (2000) AAV vectors: is clinical success on the horizon? Gene Ther. 7, 24–30.

    Article  PubMed  CAS  Google Scholar 

  23. Russell, D. W. and Kay, M. K. (1999) Adeno-associated virus vectors and hematology. Blood 94, 864–874.

    PubMed  CAS  Google Scholar 

  24. Wilson, J. M. (1996) Adenoviruses as gene-delivery vehicles. N. Engl. J. Med. 334, 1185–1187.

    Article  PubMed  CAS  Google Scholar 

  25. Chan, S. Y., Li, K., Piccotti, J. R., et al. (1999) Tissue specific consequences of the anti-adenoviral immune response: Implications for cardiac transplants. Nat. Med. 5, 1143–1149.

    Article  PubMed  CAS  Google Scholar 

  26. Gao, X. and Huang, L. (1995) Cationic liposome-mediated gene transfer. Gene Ther. 2, 710–722.

    PubMed  CAS  Google Scholar 

  27. Crystal, R. G. (1995) The gene as the drug. Nat. Med. 1, 15–17.

    Article  PubMed  CAS  Google Scholar 

  28. Li, S. and Huang, L. (2000) Nonviral gene therapy: promises and challenges. Gene Ther. 7, 31–34.

    Article  PubMed  CAS  Google Scholar 

  29. Ardehali, A., Fyfe, A., Laks, H., Drinkwater, D. C., Qiao, J.-H., and Lusis, A. (1995) Direct gene transfer into donor hearts at the time of harvest. J. Thorac. Cardiovasc, Surg. 109, 716–720.

    Article  CAS  Google Scholar 

  30. Fyfe, A. I., Ardehali, A., Laks, H., Drinkwater, D. C., and Lusis, A. J. (1995) Biologic modification of the immune response in mouse cardiac isografts using gene transfer. J. Heart Lung Transplant. 14, S165–S170.

    PubMed  CAS  Google Scholar 

  31. Dalesandro, J., Akimoto, H., Gorman, C. M., et al. (1996) Gene therapy for donor hearts: ex vivo liposome-mediated transfection. J. Thorac. Cardiovasc. Surg. 111, 416–422.

    Article  PubMed  CAS  Google Scholar 

  32. DeBruyne, L. A., Li, K., Chan, S. Y., Qin, L., Bishop, D. K., and Bromberg, J. S. (1998) Cationic lipid-mediated gene transfer of viral IL-10 prolongs graft survival in a vascularized cardiac allograft model. Gene Ther. 5, 1079–1087.

    Article  PubMed  CAS  Google Scholar 

  33. Stephan, D. J., Yang, A.-Y., San, H, et al. (1996) A new cationic liposome DNA complex enhances efficiency of arterial gene transfer in vivo. Human Gene Ther. 7, 1803–1812.

    Article  CAS  Google Scholar 

  34. Corry, R. J., Winn, H. J., and Russell, P. S. (1973) Primarily vascularized allografts of hearts in mice: the role of H-2D, H-2K, and Non-H-2 antigens in rejection. Transplantation 16, 343.

    Article  PubMed  CAS  Google Scholar 

  35. Bishop, D. K., Shelby, J., and Eichwald, E. J. (1992) Mobilization of T lymphocytes following cardiac transplantation: evidence that CD4 positive cells are required for cytotoxic T lymphocyte activation, inflammatory endothelial development, graft infiltration, and acute allograft rejection. Transplantation 53, 849–857.

    Article  PubMed  CAS  Google Scholar 

  36. Chan, S. Y., DeBruyne, L. A., Goodman, R. E., Eichwald, E. J., and Bishop, D. K. (1995) In vivo depletion of CD8 positive T cells results in Th2 cytokine production and alternate mechanisms of allograft rejection. Transplantation 59, 1155–1161.

    PubMed  CAS  Google Scholar 

  37. Piccotti, J. R., Chan, S. Y., Goodman, R. E., Magram, J., Eichwald, E. J., and Bishop, D. K. (1996) IL-12 antagonism induces Th2 responses, yet exacerbates mouse cardiac allograft rejection: evidence against a dominant protective role for Th2 cytokines in alloimmunity. J. Immunol. 157, 1951–1157.

    PubMed  CAS  Google Scholar 

  38. Piccotti, J. R., Li, K., Chan, S. Y. et al. (1998) Alloantigen-reactive Th1 helper development in IL-12 deficient mice. J. Immunol. 160, 1132–1138.

    PubMed  CAS  Google Scholar 

  39. Piccotti, J. R., Li, K., Chan, S. Y., Eichwald E. J., and D.K., Bishop. (1999) Cytokine regulation of chronic cardiac allograft rejection: evidence against a role for Th1 in the disease process. Transplantation 67, 1548–1555.

    Article  PubMed  CAS  Google Scholar 

  40. Bishop, D. K., Chan, S. Y., Eichwald, E. J., and Orosz, C. G. (2001) Immunobiology of allograft rejection in the absence of interferon-gamma: CD8+ effector cells develop independent of CD4+ cells and CD40–CD40L interactions. J. Immunol. 166, 3248–3255.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Lu, G., Bishop, D.K. (2003). Theoretical and Technical Considerations for Gene Transfer into Vascularized Cardiac Transplants. In: Metzger, J.M. (eds) Cardiac Cell and Gene Transfer. Methods in Molecular Biology, vol 219. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-350-X:135

Download citation

  • DOI: https://doi.org/10.1385/1-59259-350-X:135

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-994-0

  • Online ISBN: 978-1-59259-350-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics