Skip to main content

Intermediate Cognitive Phenotypes Associated with Schizophrenia

  • Protocol
Psychiatric Genetics

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 77))

Abstract

The search for intermediate phenotypes to inform genetic studies of psychiatric disorders is never as productive and exciting as in neuropsychological studies, particularly those of schizophrenia. A variety of cognitive impairments are frequently seen in patients with schizophrenia, and appear to be core features of this illness. In contrast, cognitive impairments seen in other psychiatric disorders, such as depression and mania, are state-related and may not be essential to these disorders (1). In studies of patients with schizophrenia, cognitive impairments do not appear to be caused simply by secondary factors associated with severe mental illness, such as poor cooperation or medications. They are present from an early stage of the illness and are stable over time, suggesting trait-like properties. Furthermore, emerging data suggest, but have not proven, that different profiles of impairment may be present in subgroups of patients. Another feature that makes these cognitive measures attractive targets for genetic studies is that they are closely related to clinical and functional outcome. Thus, the genes underlying cognitive phenotypes may be the most relevant to improving the quality of patients’ lives. Three domains of cognition are generally affected, including working memory/executive function, verbal/declarative memory, and attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gold J., Goldberg T.E., Kleinman J.E., and Weinberger D.W. (1991) The impact of symptomatic state and pharmacological treatment on cognitive functioning of patients with schizophrenia and mood disorders, in Handbook of Clinical Trials (P M. E. B., ed.), Swets and Zeitlinger, Berwyn, PA, pp. 185–214.

    Google Scholar 

  2. Weickert T. and Golberg T.E. (2000) The course of cognitive impairment in patients with schizophrenia, in New Research in Schizophrenia (PD S. T. H., ed.), Oxford University Press, New York, NY.

    Google Scholar 

  3. Goldberg T. and Green M. Neuropsychology of schizophrenia, in Psychopharmacology, Fifth Generation of Progress (Bloom F.E., Kupfer D., Bunney B. et al., eds.), Lippincott Williams & Wilkins, Philadelphia, PA, in press.

    Google Scholar 

  4. Saykin A.J., Shtasel D.L., Gur R.E., Kester D.B., Mozley L.H., Stafiniak P., et al. (1994) Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch. Gen. Psychiatry 51(2), 124–131.

    CAS  PubMed  Google Scholar 

  5. Goldstein G. and Zubin J. (1990) Neuropsychological differences between young and old schizophrenics with and without associated neurological dysfunction. Schizophr. Res. 3, 117–126.

    Article  CAS  PubMed  Google Scholar 

  6. Hyde T., Nawroz S., Goldberg T.E., Bigelow L.B., Strong D., Ostrem J.L., et al. (1994) Is there cognitive decline in schizophrenia? A cross-sectional study. Br. J. Psychiatry 164(4), 494–500.

    Article  CAS  PubMed  Google Scholar 

  7. Goldberg T.E. and Weinberger D.R. (1996) Effects of neuroleptic medications on the cognition of patients with schizophrenia: a review of recent studies. J. Clin. Psychiatry 57(Suppl. 9), 62–65.

    CAS  PubMed  Google Scholar 

  8. Heaton R.K., Gladsjo J.A., Palmer B. W., Kuck J., Marcotte T.D., and Jeste D.V. (2001) Stability and course of neuropsychological deficits in schizophrenia. Arch. Gen. Psychiatry 58(1), 24–32.

    Article  CAS  PubMed  Google Scholar 

  9. Blanchard J. and Neale J.M. (1994) The neuropsychological signature of schizophrenia: generalized or differential deficit? Am. J. Psychiatry 151, 40–48.

    CAS  PubMed  Google Scholar 

  10. Braff D.L., Heaton R., Kuck J., Cullum M., Moranville J., Grant I., et al. (1991) The generalized pattern of neuropsychological deficits in outpatients with chronic schizophrenia with heterogeneous Wisconsin Card Sorting Test results. Arch. Gen. Psychiatry 48(10), 891–898.

    CAS  PubMed  Google Scholar 

  11. Shallice T., Burgess P.W., and Frith C.D. (1991) Can the neuropsy chological case-study approach be applied to schizophrenia? Psychol. Med. 21(3), 661–673.

    Article  CAS  PubMed  Google Scholar 

  12. Gold J.M., Hermann B.P., Randolph C., Wyler A.R., Goldberg T.E., and Weinberger D.R. (1994) Schizophrenia and temporal lobe epilepsy. A neuropsychological analysis. Arch. Gen. Psychiatry 51(4), 265–272.

    CAS  PubMed  Google Scholar 

  13. Elvevag B. and Goldberg T.E. (2000) Cognitive impairment in schizophrenia is the core of the disorder. Crit. Rev. Neurobiol. 14(1), 1–21.

    CAS  PubMed  Google Scholar 

  14. Weickert T.W., Goldberg T.E., Bigelow L.B., Egan M.F., and Weinberger D.R. (2000) Differential pattern of cognitive impairment in schizophrenic patients with preserved and compromised intellect. Arch. Gen. Psychiatry, in press.

    Google Scholar 

  15. Goldberg T.E., Ragland J.D., Torrey E.F., Gold J.M., Bigelow L.B., and Weinberger D.R. (1990) Neuropsychological assessment of monozygotic twins discordant for schizophrenia (see comments). Arch. Gen. Psychiatry 47(11), 1066–1072.

    CAS  PubMed  Google Scholar 

  16. Goldberg T.E., Torrey E.F., Gold J.M., Ragland J.D., Bigelow L.B., and Weinberger D.R. (1993) Learning and memory in monozygotic twins discordant for schizophrenia. Psychol. Med. 23(1), 71–85.

    Article  CAS  PubMed  Google Scholar 

  17. Goldberg T.E., Torrey E.F., Gold J.M., Bigelow L.B., Ragland R.D., Taylor E., et al. (1995) Genetic risk of neuropsychological impairment in schizophrenia: a study of monozygotic twins discordant and concordant for the disorder. Schizophr. Res. 17(1), 77–84.

    Article  CAS  PubMed  Google Scholar 

  18. Green M.F. (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am. J. Psychiatry 15(3), 321–330.

    Google Scholar 

  19. Green M.F., Kern R.S., Braff D.L., and Mintz J. (2000) Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”? Schizophr. Bull. 26(1), 119–136.

    CAS  PubMed  Google Scholar 

  20. Berman K.F., Illowsky B.P., and Weinberger D.R. (1988) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. IV. Further evidence for regional and behavioral specificity. Arch. Gen. Psychiatry 45(7), 616–622.

    CAS  PubMed  Google Scholar 

  21. Berman K.F., Ostrem J.L., Randolph C., Gold J., Goldberg T.E., Coppola R., et al. (1995) Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: a positron emission tomography study. Neuropsychologia 33(8), 1027–1046.

    Article  CAS  PubMed  Google Scholar 

  22. Berman K.F., Zec R.F., and Weinberger D.R. (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention, and mental effort (see comments). Arch. Gen. Psychiatry 43(2), 126–135.

    CAS  PubMed  Google Scholar 

  23. Callicott J.H., Bertolino A., Mattay V.S., Langheim F.J.P., Duyn J., Coppola R., et al. (2000) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb. Cortex 10, 1078–1092.

    Article  CAS  PubMed  Google Scholar 

  24. Callicott J.H., Mattay V.S., Bertolino A., Finn K., Coppola R., Frank J.A., et al. (1999) Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cereb. Cortex 9(1), 20–26.

    Article  CAS  PubMed  Google Scholar 

  25. Weinberger D.R. (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry 44(7), 660–669.

    CAS  PubMed  Google Scholar 

  26. Weinberger D.R. and Berman K.F. (1988) Speculation on the meaning of cerebral metabolic hypofrontality in schizophrenia. Schizophr. Bull. 14(2), 157–168.

    CAS  PubMed  Google Scholar 

  27. Weinberger D.R., Berman K.F., and Chase T.N. (1988a) Mesocortical dopaminergic function and human cognition. Ann. NY Acad. Sci. 537, 330–338.

    Article  CAS  PubMed  Google Scholar 

  28. Weinberger D.R., Berman K.F., and Illowsky B.P. (1988b) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. III. A new cohort and evidence for a monoaminergic mechanism. Arch. Gen. Psychiatry 45(7), 609–615.

    CAS  PubMed  Google Scholar 

  29. Weinberger D.R., Berman K.F., and Zec R.F. (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch. Gen. Psychiatry 43(2), 114–124.

    CAS  PubMed  Google Scholar 

  30. Aleman A., Hijman R., de Haan E.H., and Kahn R.S. (1999) Memory impairment in schizophrenia: a meta-analysis. Am. J. Psychiatry 156(9), 1358–1366.

    CAS  PubMed  Google Scholar 

  31. Pantelis C., Barber F.Z., Barnes T.R., Nelson H. E., Owen A.M., and Robbins T.W. (1999) Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage. Schizophr. Res. 37(3), 251–270.

    Article  CAS  PubMed  Google Scholar 

  32. Elvevag B., Egan M.F., and Goldberg T.E. (2000a) Memory for temporal order in patients with schizophrenia. Schizophr. Res. 46(2–3), 187–193.

    Article  CAS  PubMed  Google Scholar 

  33. Elvevag B., Egan M.F., and Goldberg T.E. (2000b) Paired associate learning and memory interference in schizophrenia. Neuropsychologia 38(12), 1565–1575.

    Article  CAS  PubMed  Google Scholar 

  34. Paul B., Elvevag B., Bokat C., and Goldberg T.E. (2001) Semantic encoding and episodic memory in schizophrenia.

    Google Scholar 

  35. Elvevag B., Fisher J.E., Gurd J.M., and Goldberg T.E. (2001) Semantic clustering in verbal fluency. (Submitted.)

    Google Scholar 

  36. Elvevag B., Weinberger D.R., Suter J.C., and Goldberg T.E. (2000c) Continuous performance test and schizophrenia: a test of stimulus-response compatibility, working memory, response readiness, or none of the above? Am. J. Psychiatry 157(5), 772–780.

    Article  CAS  PubMed  Google Scholar 

  37. Cannon T.D., Zorrilla L.E., Shtasel D., Gur R.E., Gur R.C., Marco E.J., et al. (1994) Neuropsychological functioning in siblings discordant for schizophrenia and healthy volunteers. Arch. Gen. Psychiatry 51(8), 651–661.

    CAS  PubMed  Google Scholar 

  38. Kremen W.S., Seidman L.J., Pepple J.R., Lyons M.J., Tsuang M.T., and Faraone S.V. (1994) Neuropsychological risk indicators for schizophrenia: a review of family studies. Schizophr. Bull. 20(1), 103–119.

    CAS  Google Scholar 

  39. Fish B. (1977) Neurobiologic antecedents of schizophrenia in children. Evidence for an inherited, congenital neurointegrative defect. Arch. Gen. Psychiatry 34(11), 1297–1313.

    CAS  PubMed  Google Scholar 

  40. Parnas J., Schulsinger F., Schulsinger H., Mednick S.A., and Teasdale T.W. (1982) Behavioral precursors of schizophrenia spectrum. A prospective study. Arch. Gen. Psychiatry 39(6), 658–664.

    CAS  PubMed  Google Scholar 

  41. Cornblatt B.A. and Keilp J.G. (1994) Impaired attention, genetics, and the pathophysiology of schizophrenia [published erratum appears in Schizophr. Bull. 1994;20(2):248]. Schizophr. Bull. 20(1), 31–46.

    CAS  PubMed  Google Scholar 

  42. Nuechterlein K.H. and Dawson M.E. (1984) Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophr. Bull. 10(2), 160–203.

    CAS  PubMed  Google Scholar 

  43. Rutschmann J., Cornblatt B., and Erlenmeyer-Kimling L. (1977) Sustained attention in children at risk for schizophrenia. Report on a continuous performance test. Arch. Gen. Psychiatry 34(5), 571–575.

    CAS  PubMed  Google Scholar 

  44. Rutschmann J., Cornblatt B., and Erlenmeyer-Kimling L. (1986) Sustained attention in children at risk for schizophrenia: findings with two visual continuous performance tests in a new sample. J. Abnorm. Child Psychol. 14(3), 365–385.

    Article  CAS  PubMed  Google Scholar 

  45. Asarnow R.F., Steffy R.A., MacCrimmon D.J., and Cleghorn J.M. (1977) An attentional assessment of foster children at risk for schizophrenia. J. Abnorm. Psychol. 86(3), 267–275.

    Article  CAS  PubMed  Google Scholar 

  46. Grunebaum H., Weiss J.L., Gallant D., and Cohler B.J. (1974) Attention in young children of psychotic mothers. Am. J. Psychiatry 131(8), 887–891.

    CAS  PubMed  Google Scholar 

  47. Franke P., Maier W., Hardt J., and Hain C. (1993) Cognitive functioning and anhedonia in subjects at risk for schizophrenia. Schizophr. Res. 10(1), 77–84.

    Article  CAS  PubMed  Google Scholar 

  48. Mirsky A.F., Lochhead S.J., Jones B.P., Kugelmass S., Walsh D., and Kendler K.S. (1992) On familial factors in the attentional deficit in schizophrenia: a review and report of two new subject samples. J. Psychiatr. Res. 26(4), 383–403.

    Article  CAS  PubMed  Google Scholar 

  49. Egan M., Goldberg T.E., Gscheidle T., Weirick, Bigelow L., and Weinberger D.R. (2000) Relative risk of attention deficits in siblings of patients with schizophrenia. Am. J. Psychiatry 157(8), 1309–1316.

    Article  CAS  PubMed  Google Scholar 

  50. Keefe R.S., Silverman J.M., Mohs R.C., Siever L. J., Harvey P.D., Friedman L., et al. (1997) Eye tracking, attention, and schizotypal symptoms in nonpsychotic relatives of patients with schizophrenia (see comments). Arch. Gen. Psychiatry 54(2), 169–176.

    CAS  PubMed  Google Scholar 

  51. Laurent A., Biloa-Tang M., Bougerol T., Duly D., Anchisi A.M., Bosson J.L., et al. (2000) Executive/attentional performance and measures of schizotypy in patients with schizophrenia and in their nonpsychotic first-degree relatives. Schizophr. Res. 46(2–3), 269–283.

    Article  CAS  PubMed  Google Scholar 

  52. Chen W.J., Liu S.K., Chang C.J., Lien Y.J., Chang Y.H., and Hwu H.G. (1998) Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. Am. J. Psychiatry 155(9), 1214–1220.

    CAS  PubMed  Google Scholar 

  53. Finkelstein J.R., Cannon T.D., Gur R.E., Gur R.C., and Moberg P. (1997) Attentional dysfunctions in neuroleptic-naive and neuroleptic-withdrawn schizophrenic patients and their siblings. J. Abnorm. Psychol. 106(2), 203–212.

    Article  CAS  PubMed  Google Scholar 

  54. Maier W., Franke P., Hain C., Kopp B., and Rist F. (1992) Neuropsychological indicators of the vulnerability to schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 16(5), 703–715.

    Article  CAS  PubMed  Google Scholar 

  55. Saoud M., d’Amato T., Gutknecht C., Triboulet P., Bertaud J.P., Marie-Cardine M., et al. (2000) Neuropsychological deficit in siblings discordant for schizophrenia. Schizophr. Bull. 26(4), 893–902.

    CAS  PubMed  Google Scholar 

  56. Pogue-Geile M.F., Garrett A.H., Brunke J.J., and Hall J.K. (1991) Neuropsychological impairments are increased in siblings of schizophrenic patients. Schizophr. Res. 4 (abstract), 390.

    Article  Google Scholar 

  57. Franke P., Maier W., Hain C., and Klingler T. (1992) Wisconsin Card Sorting Test: an indicator of vulnerability to schizophrenia? Schizophr. Res. 6(3), 243–249.

    Article  CAS  PubMed  Google Scholar 

  58. Scarone S., Abbruzzese M., and Gambini O. (1993) The Wisconsin Card Sorting Test discriminates schizophrenic patients and their siblings. Schizophr. Res. 10(2), 103–107.

    Article  CAS  PubMed  Google Scholar 

  59. Yurgelun-Todd D.A. and Kinney D.K. (1993) Patterns of neuropsychological deficits that discriminate schizophrenic individuals from siblings and control subjects. J. Neuropsychiatry Clin. Neurosci. 5(3), 294–300.

    CAS  PubMed  Google Scholar 

  60. Shedlack K., Lee G., Sakuma M., Xie S.H., Kushner M., Pepple J., et al. (1997) Language processing and memory in ill and well siblings from multiplex families affected with schizophrenia. Schizophr. Res. 25(1), 43–52.

    Article  CAS  PubMed  Google Scholar 

  61. Condray R. and Steinhauer S.R. (1992) Schizotypal personality disorder in individuals with and without schizophrenic relatives: similarities and contrasts in neurocognitive and clinical functioning. Schizophr. Res. 7, 33–41.

    Article  CAS  PubMed  Google Scholar 

  62. Keefe R.S., Silverman J.M., Roitman S.E., Harvey P.D., Duncan M.A., Alroy D., et al. (1994) Performance of nonpsychotic relatives of schizophrenic patients on cognitive tests. Psychiatry Res. 53(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  63. Faraone S.V., Seidman L.J., Kremen W.S., Pepple J.R., Lyons M.J., and Tsuang M.T. (1995) Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: a diagnostic efficiency analysis. J. Abnorm. Psychol. 104(2), 286–304.

    Article  CAS  PubMed  Google Scholar 

  64. Toomey R., Faraone S.V., Seidman L.J., Kremen W.S., Pepple J.R., and Tsuang M.T. (1998) Association of neuropsychological vulnerability markers in relatives of schizophrenic patients. Schizophr. Res. 31(2–3), 89–98.

    Article  CAS  PubMed  Google Scholar 

  65. Staal W.G., Hijman R., Hulshoff Pol H.E., and Kahn R.S. (2000) Neuropsychological dysfunctions in siblings discordant for schizophrenia. Psychiatry Res. 95(3), 227–235.

    Article  CAS  PubMed  Google Scholar 

  66. Egan M., Goldberg T., Gscheidle T., Bigelow L., Hyde T., and Weinberger D. (2001a) Relative risk for cognitive impairments in siblings of patients with schizophrenia. Biol. Psychiatry 50(2), 98–107.

    Article  CAS  PubMed  Google Scholar 

  67. Goldberg T.E., Egan M.F., Gscheidle T., Coppola R., Weickert T., Kolachana B.S., et al. (2001) Working memory impairments in schizophrenic sibships: relative risk estimates and effects of COMT Val108/158Met genotype. submitted.

    Google Scholar 

  68. Byrne M., Hodges A., Grant E., Owens D.C., and Johnstone E.C. (1999) Neuropsychological assessment of young people at high genetic risk for developing schizophrenia compared with controls: preliminary findings of the Edinburgh High Risk Study (EHRS). Psychol. Med. 29(5), 1161–1173.

    Article  CAS  PubMed  Google Scholar 

  69. Park S., Holzman P.S., and Goldman-Rakic P.S. (1995) Spatial working memory deficits in the relatives of schizophrenic patients. Arch. Gen. Psychiatry 52(10), 821–828.

    CAS  PubMed  Google Scholar 

  70. Grove W.M., Lebow B.S., Clementz B.A., Cerri A., Medus C., and Iacono W.G. (1991) Familial prevalence and coaggregation of schizotypy indicators: a multitrait family study. J. Abnorm. Psychol. 100(2), 115–121.

    Article  CAS  PubMed  Google Scholar 

  71. Plomin R., DeFries J.C., and McClearn G.E. (1990) Behavioral Genetics, 2nd ed., W.H. Freeman and Co., New York, NY.

    Google Scholar 

  72. Chen E.Y., Lam L.C., Chen R.Y., Nguyen D.G., Chan C. K., and Wilkins A. J. (1997) Neuropsychological correlates of sustained attention in schizophrenia. Schizophr. Res. 24(3), 299–310.

    Article  CAS  PubMed  Google Scholar 

  73. Goldberg T.E., Torrey E.F., Berman K.F., and Weinberger D.R. (1994) Relations between neuropsychological performance and brain morphological and physiological measures in monozygotic twins discordant for schizophrenia. Psychiatry Res. 556(1), 51–61.

    Google Scholar 

  74. Cannon T.D., Huttunen M.O., Lonnqvist J., Tuulio-Henriksson A., Pirkola T., Glahn D., et al. (2000b) The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. Am. J. Hum. Genet. 67(2), 369–382.

    Article  CAS  PubMed  Google Scholar 

  75. Kremen W.S., Tsuang M.T., Faraone S.V., and Lyons M. J. (1992) Using vulnerability indicators to compare conceptual models of genetic heterogeneity in schizophrenia. J. Nerv. Ment. Dis. 180(3), 141–152.

    Article  CAS  PubMed  Google Scholar 

  76. Mirsky A.F., Anthony B.J., Duncan C.C., Ahearn M.B., and Kellam S.G. (1991) Analysis of the elements of attention: a neuropsychological approach. Neuropsychology Rev. 2(2), 109–145.

    Article  CAS  Google Scholar 

  77. Saudino K.J., Pedersen N.L., and McClearn G.E. (1994) The etiology of high and low cognitive ability during the second half of the life span. Intelligence 19, 359–371.

    Article  Google Scholar 

  78. Cannon T.D., Kaprio J., Lonnqvist J., Huttunen M., and Koskenvuo M. (1998) The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch. Gen. Psychiatry 55(1), 67–74.

    Article  CAS  PubMed  Google Scholar 

  79. Asarnow R.F., Steffy R.A., MacCrimmon D.J., et al. (1978) The McMaster Waterloo project: an attentional and clinical assessment of foster children at risk for schizophrenia, in The Nature of Schizophrenia: New Approaches to Research and Treatment (Wynne L.C., Cromwell R.L., and Matthysse S., eds.), Wiley, New York, NY, pp. 339–358.

    Google Scholar 

  80. Cannon T.D., Bearden C.E., Hollister J.M., Rosso I.M., Sanchez L.E., and Hadley T. (2000a) Childhood cognitive functioning in schizophrenia patients and their unaffected siblings: a prospective cohort study. Schizophr. Bull. 26(2), 379–393.

    CAS  PubMed  Google Scholar 

  81. Egan M.F., Goldberg T.E., Kolachana B.S., Callicott J.H., Mazzanti C.M., et al. (2001b) Effect of COMT Val108/158Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. USA 98(12), 6917–6922.

    Article  CAS  PubMed  Google Scholar 

  82. Sawaguchi T. and Goldman-Rakic P.S. (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251(4996), 947–950.

    Article  CAS  PubMed  Google Scholar 

  83. Sawaguchi T. and Goldman-Rakic P.S. (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J. Neurophysiol. 71(2), 515–528.

    CAS  PubMed  Google Scholar 

  84. Seamans J.K., Floresco S.B., and Phillips A.G. (1998) D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J. Neurosci. 18(4), 1613–1621.

    CAS  PubMed  Google Scholar 

  85. Williams G.V. and Goldman-Rakic P.S. (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376(6541), 572–575.

    Article  CAS  PubMed  Google Scholar 

  86. Lachman H.M., Papolos D.F., Saito T., Yu Y.M., Szumlanski C.L., and Weinshilboum R.M. (1996) Human catechol-Omethyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6(3), 243–250.

    Article  CAS  PubMed  Google Scholar 

  87. Lotta T., Vidgren J., Tilgmann C., Ulmanen I., Melen K., Julkunen I., et al. (1995) Kinetics of human soluble and membranebound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 34(13), 4202–4210.

    Article  CAS  PubMed  Google Scholar 

  88. Karoum F., Chrapusta S.J., and Egan M.F. (1994) 3-methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. J. Neurochem. 63(3), 972–979.

    Article  CAS  PubMed  Google Scholar 

  89. Gogos J.A., Morgan M., Luine V., Santha M., Ogawa S., Pfaff D., et al. (1998) Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc. Natl. Acad. Sci. USA 95(17), 9991–9996.

    Article  CAS  PubMed  Google Scholar 

  90. Sesack S.R., Hawrylak V.A., Matus C., Guido M.A., and Levey A.I. (1998) Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J. Neurosci. 18(7), 2697–2708.

    CAS  PubMed  Google Scholar 

  91. Gasparini M., Fabrizio E., Bonifati V., and Meco G. (1997) Cognitive improvement during Tolcapone treatment in Parkinson’s disease. J. Neural. Transm. 104(8–9), 887–894.

    Article  CAS  PubMed  Google Scholar 

  92. Kneavel M., Gogos J., Karayiorgou K., and Luine V. (2000) Interaction of COMT gene deletion and environment on cognition. Society for Neuroscience 30th Annual Meeting.

    Google Scholar 

  93. Liljequist R., Haapalinna A., Ahlander M., Li Y.H., and Mannisto P.T. (1997) Catechol O-methyltransferase inhibitor tolcapone has minor influence on performance in experimental memory models in rats. Behav. Brain Res. 82(2), 195–202.

    Article  CAS  PubMed  Google Scholar 

  94. Spielman R.S., McGinnis R.E., and Ewens W.J. (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52(3), 506–516.

    CAS  PubMed  Google Scholar 

  95. Kunugi H., Vallada H.P., Sham P.C., Hoda F., Arranz M.J., Li T., et al. (1997) Catechol-O-methyltransferase polymorphisms and schizophrenia: a transmission disequilibrium study in multiply affected families. Psychiatr. Genet. 7(3), 97–101.

    Article  CAS  PubMed  Google Scholar 

  96. Li T., Ball D., Zhao J., Murray R. M., Liu X., Sham P.C., et al. (2000) Family-based linkage disequilibrium mapping using SNP marker haplotypes: application to a potential locus for schizophrenia at chromosome 22q11. Mol. Psychiatry 5(1), 77–84.

    Article  CAS  PubMed  Google Scholar 

  97. Li T., Sham P.C., Vallada H., Xie T., Tang X., Murray R.M., et al. (1996) Preferential transmission of the high activity allele of COMT in schizophrenia. Psychiatr. Genet. 6(3), 131–133.

    Article  CAS  PubMed  Google Scholar 

  98. Weinberger D.R., Aloia M.S., Goldberg T.E., and Berman K.F. (1994) The frontal lobes and schizophrenia. J. Neuropsychiatry Clin. Neurosci. 6(4), 419–427.

    CAS  PubMed  Google Scholar 

  99. Weinberger D.R. (1999) Cell biology of the hippocampal formation in schizophrenia. Biol. Psychiatry 45(4), 395–402.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Egan, M.F., Goldberg, T.E. (2003). Intermediate Cognitive Phenotypes Associated with Schizophrenia. In: Leboyer, M., Bellivier, F. (eds) Psychiatric Genetics. Methods in Molecular Medicine™, vol 77. Humana Press. https://doi.org/10.1385/1-59259-348-8:163

Download citation

  • DOI: https://doi.org/10.1385/1-59259-348-8:163

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-037-3

  • Online ISBN: 978-1-59259-348-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics