Skip to main content

27 Ex Vivo Expansion of Hematopoietic Stem Cells

  • Protocol
  • 550 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 215))

Abstract

A number of studies have demonstrated the feasibility of amplifying the short-term repopulating progenitors in vitro and have shown the relevance of ex vivo expansion approaches in hematopoietic transplantation (1-3) and gene therapy protocols (4-5). In spite of the beneficial effects generally associated with ex vivo expansion strategies, a number of observations suggest that further studies on the biology of ex vivo expansion are required to facilitate the optimal implantation of this strategy in the clinics (6-7). In this respect, although in some instances data showing an impairment in the long-term repopulating capacity of ex vivo expanded grafts t(6), ex vivo amplifications in other cases of very primitive progenitors have been observed (9). To prevent the prompt differentiation of the hematopoietic stem cells (HSCs) during the ex vivo expansion process, new combinations of early-acting cytokines have been used to facilitate the self-renewal divisions in the HSC compartment (1,10-12).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Holyoake, T. L., Freshney, M. G., McNair, L., Parker, A. N., McKay, P. J., Steward, W. P., et al. (1996) Ex vivo expansion with stem cell factor and interleukin-11augments both shot-term recovery posttransplant and the ability to serially transplant marrow. Blood 87, 4589–4595.

    Article  CAS  Google Scholar 

  2. Serrano, F., Varas, F., Bernad, A., and Bueren, J. A. (1994) Accelerated and longterm hematopoietic engraftment in mice transplanted with ex vivo expanded bone marrow. Bone Marrow Transplant. 14, 855–862.

    CAS  Google Scholar 

  3. Reiffers, J., Cailliot, C., Dazey, B., Attal, M., Caraux, J., and Boiron, J. M. (1999) Abrogation of post-myeloablative chemotherapy neutropenia by ex-vivo expanded autologous CD34-positive cells. Lancet 354, 1092–1093.

    Article  CAS  Google Scholar 

  4. Bernad, A., Varas, F., Gallego, J. M., Almendral, J. M., and Bueren, J. A. (1994) Ex vivo expansion and selection of retrovirally transduced bone marrow: and efficient methodology for gene-transfer to murine lympho-haemopoietic stem cells. Br. J. Haematol. 87, 6–17.

    Article  CAS  Google Scholar 

  5. Flasshove, M., Banerjee, D., Mineishi, S., Li, M.-X., Bertino, J. R., and Moore, M. A. S. (1995) Ex vivo expansion and selection of human CD34+peripheral blood progenitor cells after introduction of a mutated dihydrofolate reductase cDNA via retroviral gene therapy. Blood 85, 566–574.

    Article  CAS  Google Scholar 

  6. Albella, B., Segovia, J. C., and Bueren, J. A. (1997) Does the granulocytemacrophage colony-forming unit content in ex vivo-expanded grafts predict the recovery of the recipient leukocytes? Blood 90, 464–470.

    Article  CAS  Google Scholar 

  7. Guenechea, G., Segovia, J. C., Albella, B., Lamana, M., Ramirez, M., Regidor, C., et al. (1999) Delayed engraftment of nonobese diabetic/severe combined immunodeficient mice transplanted with ex vivo-expanded human CD34(+) cord blood cells. Blood 93, 1097–1105.

    Article  CAS  Google Scholar 

  8. Peters, S. O., Kittler, L. W., Ramshaw, H. S., and Quesenberry, P. J. (1996) Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 87, 30–37.

    Article  CAS  Google Scholar 

  9. Piacibello, W., Sanavio, F., Garetto, L., Severino, A., Bergandi, D., Ferrario, J., et al. (1997) Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood 89, 2644–2653.

    Article  CAS  Google Scholar 

  10. Yonemura, Y., Ku, H., Lyman, S. D., and Ogawa, M. (1996) In vitro expansion of hematopoietic progenitors and maintenance of stem cells: Comparison between FLT3/FLK-2 ligand and KIT ligand. Blood 89, 1915–1921.

    Article  Google Scholar 

  11. Bhatia, M., Bonnet, D., Kapp, U., Wang, J. C., Murdoch, B., and Dick, J. E. (1997) Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J. Exp. Med. 186, 619–624.

    Article  CAS  Google Scholar 

  12. Conneally, E., Cashman, J., Petzer, A., and Eaves, C. (1997) Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proc. Natl. Acad. Sci. USA 94, 9836–9841.

    Article  CAS  Google Scholar 

  13. Testa, N. and Molineux, G. (1993) Haemopoiesis. A practical approach, in The Practical Approach, vol. 111 (Rickwood, D., ed.), Oxford University Press, New York, p. 293.

    Google Scholar 

  14. Ploemacher, R. E., van der Sluijs, J. P., Voerman, J. S., and Brons, N. H. (1989) An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood 74, 2755–2763.

    Article  CAS  Google Scholar 

  15. Lemieux, M. E., Rebel, V. I., Lansdorp, P. M., and Eaves, C. J. (1995) Characterization and purification of a primitive hematopoietic cell type in adult mouse marrow capable of lymphomyeloid differentiation in long-term marrow &quote;switch&quote; cultures. Blood 86, 1339–1347.

    Article  CAS  Google Scholar 

  16. Larochelle, A., Vormoor, J., Hanenberg, H., Wang, J. C., Bhatia, M., Lapidot, T., et al. (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat. Med. 2, 1329–1337.

    Article  CAS  Google Scholar 

  17. Harrison, D. E., Jordan, C. T., Zhong, R. K., and Astle, C. M. (1993) Primitive hemopoietic stem direct cells: assay of most productive populations by competitive repopulation with simple binomial, correlation and covariance calculations. Exp. Hematol. 21, 206–219.

    CAS  Google Scholar 

  18. Albella, B., Segovia, J. C., Guenechea, G., Pragnell, I. B., and Bueren, J. A. (1999) Preserved long-term repopulation and differentiation properties of hematopoietic grafts subjected to ex vivo expansion with stem cell factor and interleukin 11. Transplantation 67, 1348–1357.

    Article  CAS  Google Scholar 

  19. Keyes, K. A., Segovia, J. C., Bueren, J. A., Parchment, R. E., and Albella, B. (2001) Latent hematopoietic stem cell toxicity associated with protracted drug administration. Exp. Hematol. 29, 286–294.

    Article  CAS  Google Scholar 

  20. Barquinero, J., Segovia, J. C., Ramirez, M., Limon, A., Guenechea, G., Puig, T., et al. (2000) Efficient transduction of human hematopoietic repopulating cells generating stable engraftment of transgene-expressing cells in NOD/SCID mice. Blood 95, 3085–3093.

    Article  CAS  Google Scholar 

  21. Rubinstein, P., Dobrila, P., Rosenfield, R. E., Adamson, J. W., Migliaccio, G., Migliaccio, A. R., Taylor, P. E., and Stevens, C. E. (1995) Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc. Natl. Acad. Sci. USA 92, 10119–10122.

    Article  CAS  Google Scholar 

  22. Varas, F., Bernad, A., and Bueren, J. A. (1996) Granulocyte colony-stimulating factor mobilizes into peripheral blood the complete clonal repertoire of hematopoietic precursors residing in the bone marrow of mice. Blood 88, 2495–2501.

    Article  CAS  Google Scholar 

  23. Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., et al. (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–848.

    Article  CAS  Google Scholar 

  24. Guenechea, G., Gan, O. I., Dorrell, C., and Dick, J. E. (2001) Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat. Immunol. 2, 75–82.

    Article  CAS  Google Scholar 

  25. Kamel-Reid, S. and Dick, J. E. (1988). Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 242, 1706–1709.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Albella, B., Carlos Segovia, J., Guenechea, G., Antonio Bueren, J. (2003). 27 Ex Vivo Expansion of Hematopoietic Stem Cells. In: Körholz, D., Kiess, W. (eds) Cytokines and Colony Stimulating Factors. Methods in Molecular Biology, vol 215. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-345-3:363

Download citation

  • DOI: https://doi.org/10.1385/1-59259-345-3:363

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-58829-035-9

  • Online ISBN: 978-1-59259-345-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics