Skip to main content

Genetic Engineering of Dendritic Cells by Adenovirus-Mediated TNF-α Gene Transfer

  • Protocol
Cytokines and Colony Stimulating Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 215))

  • 518 Accesses

Abstract

Dendritic cells (DCs) are one of the most potent antigen-presenting cells (APCs). They migrate as precursors from the bone marrow into various organs, where they usually reside in an inactive state (1). However, during this regional residency, these cells can efficiently endocytose and process antigens (2). Upon activation, they undergo a differentiation process that results in decreased antigen-processing capacity and enhanced expression of major histocompatibility complex (MHC) and costimulatory molecules, after which they migrate to the lymphoid organs to interact with or activate naive T cells (3,4). Because of the critical roles DCs have in the generation of primary immune responses, an important avenue of investigation is their potential for modulating immunologic functions, such as the induction of immune tolerance or tumor immunity. Recently, it has been shown that DCs pulsed with tumor-derived MHC class I-restricted peptides or tumor lysates are able to induce significant cytotoxic T-lymphocyte (CTL)-dependent antitumor immune responses in vitro as well as in vivo (5-7). However, the therapeutic efficiency of these DC vaccine strategies has been quite limited, because they have protected against rechallenge with only small numbers of parental tumor cells or inhibited very earlystage-established tumors. Thus, a strategic goal of current cancer vaccine research has become the induction of stronger tumor-specific CTL responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schuler, G., Koch, F., Heufler, C., Kampgen, E., Topar, G., and Romani, N. (1993) Murine epidermal Langerhans cells as a model to study tissue dendritic cells. Adv.Exp. Med. Biol. 329, 243–254.

    Article  CAS  Google Scholar 

  2. Steinman, R. M. and Bancherear, J. (1988) Dendritic cells and the control of immunity. Nature 392, 145–152.

    Google Scholar 

  3. Steinman, R., Witmer-Pack, M., and Inaba, K. (1993) Dendritic cells: antigen presentation, accessory function and clinical relevance. Adv. Exp. Med. Biol. 329, 1–9.

    Article  CAS  Google Scholar 

  4. Cella, M., Sallusto, F., and Lanzavecchia, A. (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr. Opin. Immunol. 9, 10–16.

    Article  CAS  Google Scholar 

  5. Porgador, A., Snyder, D., and Gilboa, E. (1996) Induction of antitumor immunity using bone marrow-generated dendritic cells. J. Immunol. 156, 2918–2926.

    CAS  Google Scholar 

  6. Bellone, M., Lezzi, G., Martin-Fontecha, A., Rivolta, L., Manfredi, A., Protti, M., et al. (1997) Rejection of a nonimmunogeneic melanoma by vaccination with natural melanoma peptides on engineered antigen-presenting cells. J. Immunol. 158, 783–789.

    CAS  Google Scholar 

  7. Asheley, D., Faiola, B., Nair, S., Hale, L., Bigner, D., and Gilbao, E. (1997) Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induced antitumor immunity against central nervous system tumors. J. Exp. Med. 186, 1177–1182.

    Article  Google Scholar 

  8. Jonuleit, H., Knop, J., and Enk, A. (1996) Cytokines and their effects on maturation, differentiation and migration of dendritic cells. Arch. Dermatol. Res. 289, 1–8.

    Article  CAS  Google Scholar 

  9. Caux, C., Dezutter-Dambuyant, C., Schmitt, D., and Banchereau, J. (1992) GMCSF and TNF-α cooperate in the generation of dendritic Langerhans cells. Nature 360, 258–269.

    Article  CAS  Google Scholar 

  10. Jonuleit, H., Kuhn, U., Muller, G., Steinbrink, K., Paragnik, L., Schmitt, E., et al. (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol. 27, 3135–3142.

    Article  CAS  Google Scholar 

  11. Labeur, M., Roters, B., Pers, B., Mehling, A., Luger, T., Schwarz, T., et al. (1999) Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J. Immunol. 162, 168–175.

    CAS  Google Scholar 

  12. Sallusto, F., Cella, M., Danieli, C., and Lanzavecchia, A. (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400.

    Article  CAS  Google Scholar 

  13. Rieser, C., Bock, G., Klocker, H., Bartsch, G., and Thumher, M. (1997) Prostaglandin Ea and tumor necrosis factor alpha cooperate to activate human dendritic cells: synergistic activation of interleukin 12 production. J. Exp. Med. 186, 1603–1608.

    Article  CAS  Google Scholar 

  14. Cumberbatch, M. and Kimber, I. (1992) Tumor necrosis factor-α induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulation for Langerhans’ cell migration. Immunology 75, 257–263.

    CAS  Google Scholar 

  15. Cumberbatch, M. and Kimber, I. (1995) Tumor necrosis factor-α is required for accumulation of dendritic cells in draining lymph nodes and for optimal contact sensitization. Immunology 84, 31–35.

    CAS  Google Scholar 

  16. Kay, M. A., Glorioso, J. C., and Naldini, L. (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 7, 33–40.

    Article  CAS  Google Scholar 

  17. Shenk, T. (1996) Adenoviruses: the viruses and their replication, in Fields Virology, 3rd ed (Fields, B. N., Knipe, D. M., and Howley, P. M., eds.), Lippincott-Raven, Philadelphia, pp. 2111–2148.

    Google Scholar 

  18. Graham, F. and Prevec, L. (1991) Manipulation of adenovirus vectors, in Methods in Molecular Biology (Murray, E. J. and Clifton, N. J., eds.), Humana, Totowa, NJ, pp. 109–128.

    Google Scholar 

  19. Okada, T., Ramsey, W. J., Munir, J., Wildner, O., and Blaese, R. M. (1998) Efficient directional cloning of recombinant adenovirus vectors using DNA-protein complex. Nucl. Acids Res. 26, 1947–1950.

    Article  CAS  Google Scholar 

  20. Scarppini, C., Arthur, J., Efstathiou, S., McGrath, Y., and Wilkinson, G. (1999) Herpes simplex virus and adenovirus vectors, in DNA Viruses: A Practical Approach (Cann, J., ed.), Oxford University Press, New York, pp. 267–306.

    Google Scholar 

  21. McGrory, W. J., Bautista, D. S., and Graham, F. L. (1988) A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology 163, 614–617.

    Article  CAS  Google Scholar 

  22. Chartier, C., Degryse, E., Gantzer, M., Dieterle, A., Pavirani, A., and Mehtali, M. (1996) Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J. Virol. 70, 4805–4810.

    Article  CAS  Google Scholar 

  23. Fu, S. and Deisseroth, A.B. (1997) Use of the cosmid adenoviral vector cloning system for the in vitro construction of recombinant adenoviral vectors. Hum. Gene Ther. 8, 1321–1330.

    Article  CAS  Google Scholar 

  24. Ketner, G., Spencer, F., Tugendreich, S., Connelly, C., and Hieter, P. (1994) Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone. Proc. Natl. Acad. Sci. USA 91, 6186–6190.

    Article  CAS  Google Scholar 

  25. Boviatsis, E., Chase, M., Wei, M., et al. (1994) Gene transfer into experimental brain tumors mediated by adenovirus, herpes simplex virus and retrovirus. Hum. Gene Ther. 5, 183–191.

    Article  CAS  Google Scholar 

  26. Cao, X., Zhang, W., He, L., Xie, Z., Ma, S., Tao, Q., et al. (1998) Lymphotactin gene-modified bone marrow dendritic cells act as more potent adjuvants for peptide delivery to induce specific antitumor immunity. J. Immunol. 161, 6238–6244.

    CAS  Google Scholar 

  27. Curiel-Lewandrowski, C., Mahnke, K., Labeur, M., Roters, B., Schmidt, W., Granstein, R., et al. (1999) Transfection of immature murine bone marrow-derived dendritic cells with the granulocyte-macrophage colony-stimulating factor gene potently enhance their in vivo antigen-presenting capacity. J. Immunol. 163, 174–183.

    CAS  Google Scholar 

  28. Wright, P., Braun, R., Babiuk, L., Hurk, S., Moyana, T., Zheng, C., et al. (1999) Adenovirus-mediated TNF gene transfer induces significant tumor regression in mice. Cancer Biother. Radiopharm. 14, 49–57.

    CAS  Google Scholar 

  29. Hirt, B. (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26, 365–369.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Xiang, J., Wu, J. (2003). Genetic Engineering of Dendritic Cells by Adenovirus-Mediated TNF-α Gene Transfer. In: Körholz, D., Kiess, W. (eds) Cytokines and Colony Stimulating Factors. Methods in Molecular Biology, vol 215. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-345-3:213

Download citation

  • DOI: https://doi.org/10.1385/1-59259-345-3:213

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-58829-035-9

  • Online ISBN: 978-1-59259-345-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics