In Vitro Maturation of Dendritic Cells from Blood Progenitors

  • Lina Matera
  • Alessandra Galetto
Part of the Methods in Molecular Biology™ book series (MIMB, volume 215)


Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) because of their ability to elicit strong proliferative response to alloantigens and to recall antigens. Most importantly, DCs have the unique ability to initiate the immune response by capturing antigens in peripheral tissues and migrating to secondary lymphoid organs, where they sensitize naive CD4+T cells to the antigen. DC migration is concomitant with maturation, during which the DCs lose their ability to acquire and process antigens (1,2).


Complete Medium Mixed Lymphocyte Reaction Major Histocompatability Complex Major Histocompatability Complex Class Allogeneic Mixed Lymphocyte Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Banchereau, J. and Steinman, R. (1998) Dendritic cells and the control of immunity. Nature 392, 245–252.PubMedCrossRefGoogle Scholar
  2. 2.
    Peters, J. H., Gieseler, R. K., Thiele, B., and Steinbach, F. (1996) Dendritic cells: from ontogenic orphans to myelomonocytic descendants. Immunol. Today 17, 273–278.PubMedCrossRefGoogle Scholar
  3. 3.
    Sallusto, F. and Lanzavecchia, A. (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocute-macrophage colony stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109.PubMedCrossRefGoogle Scholar
  4. 4.
    Romani, N., Gruner, S., Brang, D., Kampgen, E., Lenz, A., Trockenbacher, B., et al. (1994) Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180, 83–93.PubMedCrossRefGoogle Scholar
  5. 5.
    Kasinrerk W., Baumruker, T., Majdic, O., Knapp, W., and Stockinger, H. (1993) CD1 molecule expression on human monocytes induced by granulocytesmacrophage colony-stimulating factor. J. Immunol. 150, 579–584.PubMedGoogle Scholar
  6. 6.
    Peters, J. H., Rupper, J., Gieseler, R. K., Najar, H. M., and Xu, H. (1991) Differentiation of human monocytes into CD14 negative accessory cells: do dendritic cells derive from the monocytic line-age? Pathobiology 59, 122–126.PubMedCrossRefGoogle Scholar
  7. 7.
    Ruppert, J., Friedrichs, D., Xu, H., and Peters, J. H. (1991) IL-4 decreases the expression of monocyte differentiation marker CD14, paralleled by an increasing accessory potency. Immunobiology 182, 449–464.PubMedGoogle Scholar
  8. 8.
    Lauener, R. P., Goyert, S. M., Geha, R. S., and Vercelli, D. (1990) Interleukin-4 downregulates the expression of CD 14 in normal human monocytes. Eur. J. Immunol. 20, 2375–2381.PubMedCrossRefGoogle Scholar
  9. 9.
    Reis e Sousa, C., Stahl, P. D., and Austyn, J. M. (1993) Phagocytosis of antigen by Langerhans cells in vitro. J. Exp. Med. 178, 509–519.PubMedCrossRefGoogle Scholar
  10. 10.
    Lamaze, C. and Schmidt, S. L. (1985) The emergence of clathrin-independent pinocytic pathways. Curr. Opin. Cell Biol. 7, 573–580.CrossRefGoogle Scholar
  11. 11.
    Sallusto, F., Cella, M., Danili, C., and Lanzavecchia, A. (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokine and bacterial products. J. Exp. Med. 182, 389–400.PubMedCrossRefGoogle Scholar
  12. 12.
    MacPherson, G. G., Jenkins, C. D., Stein, M. J., and Edwards, C. (1995) Endotoxinmediated dendritic cell release from the intestine. Characterization of released dendritic cells and TNF dependence. J. Immunol. 154, 1317–1322.PubMedGoogle Scholar
  13. 13.
    De Smedt, T., Pajak, B., Muraille, E., Lespagnard, L., Heinen, E., De Baetselier, P., et al. (1996) Regulation on dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med. 184, 1413–1424.PubMedCrossRefGoogle Scholar
  14. 14.
    Rescigno, M., Citterio, S., Thery, C., Rittig, M., Medaglini, D., Pozzi, G., et al. (1998) Bacteria-induced neo-biosynthesis, stabilization, and surface expression of functional class I molecules in mouse dendritic cels. Proc. Natl. Acad. Sci. USA 95, 5229–5234.PubMedCrossRefGoogle Scholar
  15. 15.
    Sparwasser, T., Koch, E. S., Vabulas, R. M., Heeg, K., Lipford, G. B., Ellwart, J. W., et al. (1998) Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur. J. Immunol. 28, 2045–2054.PubMedCrossRefGoogle Scholar
  16. 16.
    Cella, M., Salio, M., Sakakibara, Y., Langen, H., Julkunen, I., and Lanzavecchia, A. (1999) Maturation, activation and protection of dendritic cells induced by doublestranded RNA. J. Exp. Med. 189, 821–829.PubMedCrossRefGoogle Scholar
  17. 17.
    Verdijk, R. M., Mutis, T., Esendam, B., Kamp, J., Melief, C. J. M., Brand, A., et al. (1999) Polyriboinosinic polyribocytidylic acid (poly(I: C)) induces stable maturation of functionally active human dendritic cells. J. Immunol. 163, 57–61.PubMedGoogle Scholar
  18. 18.
    Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., Van Kooten, C., Durand, I., et al. (1994) Activation of human dendritic cells through CD40 cross-linking. J. Exp. Med. 180, 1263–1272.PubMedCrossRefGoogle Scholar
  19. 19.
    Cella, M., Scheideffer, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A., and Alber, G. (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity. J. Exp. Med. 184, 747–752.PubMedCrossRefGoogle Scholar
  20. 20.
    Bender, A., Sapp, M., Schuler, G., Steinman, R. M., and Bhardwaj, N. (1996) Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J. Immunol. Methods 196, 121–135.PubMedCrossRefGoogle Scholar
  21. 21.
    Romani, R., Reider, D., Heuer, M., Ebner, S., Kampgen, E., Eibl, B., et al. (1996) Generation of mature dendritic cells from human blood: an improved method with special regard to clinical applicability. J. Immunol. Methods 196, 137–151.PubMedCrossRefGoogle Scholar
  22. 22.
    Reddy, A., Sapp, M., Feldman, M., Subklewe, M., and Bhardwaj, N. (1997) A monocyte conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells. Blood 90, 3640–3636.PubMedGoogle Scholar
  23. 23.
    Ridge, J. P., Di Rosa, F., and Matzinger, P. (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+T-helper and a T-killer cell. Nature 393, 474–478.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhou, L. J. and Tedder, T. F. (1996) CD14+blood monocytes can differentiate into functionally mature CD83+dendritic cells. Proc. Natl. Acad. Sci. USA 93, 2588–2592.PubMedCrossRefGoogle Scholar
  25. 25.
    Winzler, C., Rovere, P., Rescigno, M., Citterio, S., Granucci, F., Mutini, C., et al. (1997) Maturation steps of mouse dendritic cells in growth-factor dependent long-term cultures. J. Exp. Med. 185, 317–328.PubMedCrossRefGoogle Scholar
  26. 26.
    Lanier, L. L., O’Fallon, S., Somoza, C., Philips, J. H., Linsley, P. S., Okumura, K., et al. (1995) CD80 (B7) and CD86 (B70) provide similar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL. J. Immunol. 154, 97–105.PubMedGoogle Scholar
  27. 27.
    Macatonia, S. E., Hosken, N. A., Litton, M., Vieira, P., Hsieh, C. S., Culpepper, V. A., et al. (1995) Dendritic cells produce IL-12 and direct development of Th1 cells from naive CD4+T cells. J. Immunol. 154, 5071–5079.PubMedGoogle Scholar
  28. 28.
    Koch, F., Stanzl, U., Jennewien, P., Janke, K., Heufler, C., Kampgen, E., et al. (1996) High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J. Exp. Med. 184, 741–747.PubMedCrossRefGoogle Scholar
  29. 29.
    Yasunori, Y., Tsumura, H., Miwa, M., and Inaba, K. (1997) Contrasting effects of TGF-Β1 and TNF-α on the development of dendritic cells from progenitors in mouse bone marrow. Stem Cells 15, 144–153.CrossRefGoogle Scholar
  30. 30.
    Tedder, T. F. and Jansen, P. J. (1998) Isolation and generation of human dendritic cells, Unit 7.32, in Current Protocols of Immunology, Wiley Interscience, New York.Google Scholar
  31. 31.
    Pickl, W. F., Majdic, O., Kohl, P., Stockl, J., Riedl, E., Scheinecker, C., et al. (1996) Molecular and functional characteristics of dendritic cells generated from highly purified CD14+peripheral blood monocytes. J. Immunol. 157, 3850–3859.PubMedGoogle Scholar
  32. 32.
    Matera, L., Galetto, A., Geuna, M., Vekemans, K., Ricotti, E., Contarini, M., et al. (2000) Individual and combined effect of GM-CSF and prolactin on maturation of dendritic cells from blood monocytes under serum-free conditions. Immunology 100, 29–36.PubMedCrossRefGoogle Scholar
  33. 33.
    Rieser, C., Bock, G., Klocker, H., Bartsch, G., and Thurnher, M. (1997) Prostaglandin E2 and tumor necrosis factor-α cooperate to activate human dendriticcells: synergistic activation of interleukin 12 production. J. Exp. Med. 186, 1603–1608.PubMedCrossRefGoogle Scholar
  34. 34.
    Jonuleit, H., Kuhn, U., Muller, G., Steinbrink, K., Paragnik, L., Schmitt, E., et al. (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol. 27, 3135–3142.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Lina Matera
    • 1
  • Alessandra Galetto
    • 2
  1. 1.Laboratory of Tumor Immunology, Department of Internal MedicineUniversity of TurinItaly
  2. 2.Department of Oncological SurgeryUniversity of TurinItaly

Personalised recommendations