Skip to main content

Identification of Sites of Glycosylation

  • Protocol
Protein Sequencing Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 211))

Abstract

Glycoproteins typically contain three types of glycans (1), the so-called N-linked glycans which are attached via an amide bond to asparagine in a Asn-Xxx-Ser(Thr) motif where Xxx can be any amino acid except proline; the O-linked glycans that are attached to serine or threonine, and glycosylphosphatidylinositol lipid anchors attached to the carboxy-terminus of some proteins. Glycoproteins containing N-linked glycans typically possess from 1-20 glycosylation sites that may or may not be occupied, usually with a range of carbohydrate structures. Each individual glycoprotein is known as a “glycoform”. All of these N-linked carbohydrate structures contain a trimannosyl-chitobiose [Manα 1→(Manα 1 →6)Manβ 1 →-4GlcNAcβ 1→ 4GlcNAc] pentasaccharide core with one or more glycan chains (antennae) attached to each of the nonreducing mannose residues (see Fig. 1). Glycans containing only mannose in the antennae are termed “high-mannose,” those with galactose and GlcNAc in both antennae are termed “complex” and glycans with both mannose and GlcNAc on different antennae are known as “hybrid” glycans. Fucose, sialic acid, other monosaccharides and sulphate are frequently also present. O-linked glycans are usually smaller, lack a common core structure and are usually found in groups on adjacent or closely spaced amino acids. Several structural types are recognised (see Fig. 1). Unlike the case of N-linked glycans, there is no consensus sequence of amino acids directing O-linked glycosylation.

Top, Simplified biosynthetic pathway for N-linked glycans showing the main structural types. Bottom, The four common core structures for O-linked glycans. O, mannose; galactose; glucose; GlcNAc; GlcNAc; fucose; sialic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sturgeon, R. J. (1988) The glycoproteins and glycogen, in Carbohydrate Chemistry (Kennedy, J. F., ed.), Oxford University Press, Oxford, UK, pp. 263–302.

    Google Scholar 

  2. Fu, D., Chen, L., and O’Neill, R. A. (1994) A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry. Carbohydrate Res. 261, 173–186.

    Article  CAS  Google Scholar 

  3. Mock, K. K., Davy, M., and Cottrell, J. S. (1991) The analysis of underivatised oligosaccharides by matrix-assisted laser desorption mass spectrometry. Biochem. Biophys. Res. Commun. 177, 644–651.

    Article  PubMed  CAS  Google Scholar 

  4. Bonfichi, R., Sottani, C., Colombo, L., Coutant, J. E., Riva, E., and Zanette, D. (1995) Preliminary investigation of glycosylated proteins by capillary electrophoresis and capillary electrophoresis/mass spectrometry using electrospray ionization and by matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. J. Mass Spectrom./Rapid Commun. Mass Spectrom. S95–S106.

    Google Scholar 

  5. Tsarbopoulos, A., Bahr, U., Pramanik, B. N., and Karas, M. (1997) Glycoprotein analysis by delayed extraction and post-source decay MALDI-TOF-MS. Int. J. Mass Spectrom. Ion Processes 169/170, 251–261.

    Article  Google Scholar 

  6. Huddleston, M. J., Bean, M. F., and Carr, S. A. (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS-methods for selective detection of glycopeptides in protein digests. Anal. Chem. 65, 877–884.

    Article  PubMed  CAS  Google Scholar 

  7. Tarentino, A. L., Gómez, C. M., and Plummer, T. H., Jr. (1985) Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochemistry 24, 4665–5671.

    Article  PubMed  CAS  Google Scholar 

  8. Küster, B., Wheeler, S. F., Hunter, A. P., Dwek, R. A., and Harvey, D. J. (1997) Sequencing of N-linked oligosaccharides directly from protein gels: In-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high performance liquid chromatography. Anal. Biochem. 250, 82–101.

    Article  PubMed  Google Scholar 

  9. Gonzalez, J., Takao, T., Hori, H., Besada, V., Rodriguez, R., Padron, G., and Shimonishi, Y. (1992) A method for determination of N-glycosylation sites in glycoproteins by collision-induced dissociation analysis in fast atom bombardment mass spectrometry: identification of the positions of carbohydrate-linked asparagine in recombinant /ga-amylase by treatment with peptide-N-glycosidase F in 18O-labelled water. Anal. Biochem. 205, 151–158.

    Article  PubMed  CAS  Google Scholar 

  10. Küster, B. and Mann, M. (1999) 18O-labeling of N-glycosylation sites to improve the identification of gel-separated glycoproteins using peptide mass mapping and database searching. Anal. Chem. 71, 1431–1440.

    Article  PubMed  Google Scholar 

  11. Ferguson, M. A. J. (1991) Lipid anchors on membrane proteins. Curr. Opin. Struct. Biol. 1, 522–529.

    Article  CAS  Google Scholar 

  12. Puoti, A. and Conzelmann, A. (1992) Structural characterisation of free glycolip-ids which are potential precursors for glycosylphosphatidylinositol anchors in mouse thymoma cell lines. J. Biol. Chem. 267, 22673–22680.

    PubMed  CAS  Google Scholar 

  13. Montreuil, J., Bouquelet, S., Debray, H., Fournet, B., Spik, G., and Strecker, G. (1986) Glycoproteins, in Carbohydrate Analysis: A Practical Approach (Chaplin, M. F., and Kennedy, J. F., eds.), IRL Press, Oxford, UK, pp. 143–204.

    Google Scholar 

  14. Karas, M., Ehring, H., Nordhoff, E., Stahl, B., Strupat, K., Hillenkamp, F., et al. (1993) Matrix-assisted laser desorption/ionization mass spectrometry with additives to 2,5-dihydroxybenzoic acid. Org. Mass Spectrom. 28, 1476–1481.

    Article  CAS  Google Scholar 

  15. Harvey, D. J. (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom. Rev. 18, 349–451.

    Article  PubMed  CAS  Google Scholar 

  16. Dwek, R. A., Edge, C. J., Harvey, D. J., Wormald, M. R., and Parekh, R. B. (1993) Analysis of glycoprotein-associated oligosaccharides. Ann. Rev. Biochem. 62, 65–100.

    Article  PubMed  CAS  Google Scholar 

  17. Harvey, D. J., Kuster, B., Wheeler, S. F., Hunter, A. P., Bateman, R. H., and Dwek, R. A. (2000) Matrix-assisted laser desorption/ionization mass spectrometry of N-linked carbohydrates and related compounds, in Mass Spectrometry in Biology and Medicine (Burlingame, A. L., Carr, S. A., and Baldwin, M. A., eds.), Humana Press, Totowa, NJ, pp. 403–437.

    Google Scholar 

  18. Takahashi, N. (1977) Demonstration of a new amidase acting on glycopeptides. Biochem. Biophys. Res. Commun. 76, 1194–1201.

    Article  PubMed  CAS  Google Scholar 

  19. Sugiyama, K., Ishihara, H., Tejima, S., and Takahashi, N. (1983) Demonstration of a new glycopeptidase from jack-bean meal acting on aspartylglucosylamine linkages. Biochem. Biophys. Res. Commun. 112, 155–160.

    Article  PubMed  CAS  Google Scholar 

  20. Yoshima, H., Matsumoto, A., Mizuochi, T., Kawasaki, T., and Kobata, A. (1981) Comparative study of the carbohydrate moieties of rat and human plasma α 1-acid glycoproteins. J. Biol. Chem. 256, 8476–8484.

    PubMed  CAS  Google Scholar 

  21. Küster, B., and Harvey, D. J. (1997) Ammonium-containing buffers should be avoided during enzymatic release of glycans from glycoproteins when followed by reducing terminal derivatization. Glycobiology 7, vii–ix.

    PubMed  Google Scholar 

  22. Sutton, C. W., O’Neill, J. A., and Cottrell, J. S. (1994) Site-specific characterization of glycoprotein carbohydrates by exoglycosidase digestion and laser desorption mass spectrometry. Anal. Biochem. 218, 34–46.

    Article  PubMed  CAS  Google Scholar 

  23. Mock, K. K., Sutton, C. W., and Cottrell, J. S. (1992) Sample immobilization protocols for matrix-assisted laser-desorption mass spectrometry. Rapid Commun. Mass Spectrom. 6, 233–238.

    Article  PubMed  CAS  Google Scholar 

  24. Harvey, D. J. (1993) Quantitative aspects of the matrix-assisted laser desorption mass spectrometry of complex oligosaccharides. Rapid Commun. Mass Spectrom. 7, 614–619.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Harvey, D.J. (2003). Identification of Sites of Glycosylation. In: Smith, B.J. (eds) Protein Sequencing Protocols. Methods in Molecular Biology™, vol 211. Humana Press. https://doi.org/10.1385/1-59259-342-9:371

Download citation

  • DOI: https://doi.org/10.1385/1-59259-342-9:371

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-975-9

  • Online ISBN: 978-1-59259-342-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics