Skip to main content

Peptide Mass Fingerprinting Using MALDI-TOF Mass Spectrometry

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 211))

Abstract

Large-format 2D gel electrophoresis systems in routine operation are capable of resolving several thousand cellular proteins in 1 or 2 d (1,2). For the last decade, a combination of Edman microsequence analysis and identification of proteins by staining with specific antibodies has been used to systematically identify proteins and establish cellular databases (35). There are, however, significant problems associated with these approaches. Most proteins are only present in the low-to upper-femtomole range, which is significantly below the level at which automated sequencers can reliably operate (6,7). The relatively slow speed of the Edman process also means that the number of proteins is too great to permit large-scale characterization within any useful period of time. The use of monoclonal antibodies, while both rapid and sensitive, requires the ready availability of a large pool of specific antibody probes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. O’Farrell, P. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.

    CAS  Google Scholar 

  2. Patton, W. F., Pluskal, M. G., Skea, W. M., et al. (1990) Development of a dedicated two-dimensional gel electrophoresis system that provides optimal pattern reproducibility and polypeptide resolution. Biotechniques 8, 518–527.

    PubMed  CAS  Google Scholar 

  3. Celis, J. E., Gesser, B., Rasmussen, H. H., et al. (1990) Comprehensive two-dimensional gel protein databases offer a global approach to the analysis of human cells: the transformed amnion cells (AMA) master database and its link to genome DNA sequence analysis. Electrophoresis 11, 989–1071.

    Article  PubMed  CAS  Google Scholar 

  4. Garrels, J. and Franza, B. (1989) The REF52 protein database: methods of database construction and analysis using the QUEST system and characterization of protein patterns from proliferating and quiescent REF52 cells. J. Biol. Chem. 264, 5283–5298.

    PubMed  CAS  Google Scholar 

  5. Rasmussen, H. H., Van Damme, J., Bauw, G., et al. (1991) Protein electroblotting and microsequencing in establishing integrated human protein databases, in Methods in Protein Sequence Analysis (Jornvall, H., Hoog, J. O., and Gustavsson, A. M., eds.), Birkhauser Verlag, Basel, pp. 103–114.

    Google Scholar 

  6. Hewick, R. M., Hunkapiller, M. W., Hood, L. E., and Dreyer, W. J. (1981) A gas-liquid solid phase peptide and protein sequenator. J. Biol. Chem. 256, 7990–7997.

    PubMed  CAS  Google Scholar 

  7. Totty, N. F., Waterfield, M. D., and Hsuan, J. J. (1992) Accelerated high-sensitivity microsequencing of proteins and peptides using a miniature reaction cartridge. Protein Sci. 1, 1215–1224.

    Article  PubMed  CAS  Google Scholar 

  8. Henzel, W. J., Billeci, T. M., Stults, J. T., et al. (1993) Identifying proteins from 2-dimensional gels by molecular mass searching of peptide-fragments in protein-sequence databases. Proc. Natl. Acad. Sci. USA 90, 5011–5015.

    Article  PubMed  CAS  Google Scholar 

  9. Pappin, D. J. C., Hojrup, P., and Bleasby, A. J. (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol. 3, 327–332.

    Article  PubMed  CAS  Google Scholar 

  10. Mann, M., Hojrup, P., and Roepstorff, P. (1993) Use of mass-spectrometric molecular-weight information to identify proteins in sequence databases. Biol. Mass Spectrom. 22, 338–345.

    Article  PubMed  CAS  Google Scholar 

  11. Yates, J. R., Speicher, S., Griffin, P. R., and Hunkapiller, T. (1993) Peptide mass maps-a highly informative approach to protein identification. Anal. Biochem. 214, 397–408.

    Article  PubMed  CAS  Google Scholar 

  12. James, P., Quadroni, M., Carafoli, E., and Gonnet, G. (1993) Protein identification by mass profile fingerprinting. Biochem. Biophys. Res. Commun. 195, 58–64.

    Article  PubMed  CAS  Google Scholar 

  13. Aebersold, R. H., Leavitt, J., Saavedra, R. A., et al. (1987) Internal amino acid sequence analysis of proteins separated by one-or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc. Natl. Acad. Sci. USA 84, 6970–6974.

    Article  PubMed  CAS  Google Scholar 

  14. Bauw, G., Van Damme, J., Puype, M., et al. (1989) Protein electroblotting and microsequencing strategies in generating protein databases from two-dimensional gels. Proc. Natl. Acad. Sci. USA 86, 7701–7705.

    Article  PubMed  CAS  Google Scholar 

  15. Fernandez, J., DeMott, M., Atherton, D., and Mische, S. M. (1992) Internal protein sequence analysis: enzymatic digestion for less than 10 micrograms of protein bound to polyvinylidene difluoride or nitrocellulose membranes. Anal. Biochem. 201, 255–264.

    Article  PubMed  CAS  Google Scholar 

  16. Fernandez, J., Andrews, L., and Mische, S. M. (1994) An improved procedure for enzymatic digestion of polyvinylidene difluoride-bound proteins for internal sequence-analysis. Anal. Biochem. 218, 112–117.

    Article  PubMed  CAS  Google Scholar 

  17. Patterson, S. D. and Aebersold, R. (1995) Mass-spectrometric approaches for the identification of gel-separated proteins. Electrophoresis 16, 1791–1814.

    Article  PubMed  CAS  Google Scholar 

  18. Coull, J. M. and Pappin, D. J. C. (1990) A rapid fluorescent staining procedure for proteins electroblotted onto PVDF membranes. J. Protein Chem. 9, 259,260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Pappin, D.J.C. (2003). Peptide Mass Fingerprinting Using MALDI-TOF Mass Spectrometry. In: Smith, B.J. (eds) Protein Sequencing Protocols. Methods in Molecular Biology™, vol 211. Humana Press. https://doi.org/10.1385/1-59259-342-9:211

Download citation

  • DOI: https://doi.org/10.1385/1-59259-342-9:211

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-975-9

  • Online ISBN: 978-1-59259-342-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics