Skip to main content

Hydrolysis of Samples for Amino Acid Analysis

  • Protocol
Protein Sequencing Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 211))

Abstract

There is no single hydrolysis method that will effectively cleave all proteins to single amino acids completely and quantitatively. This is owing to the varying stability of the peptide bonds between the different amino acids and the amino acid side chains, which are themselves susceptible to the reagents and conditions used to cleave the peptide bonds (see Table 1). The classical hydrolysis conditions, to which all other methods are compared, is liquid-phase hydrolysis in which the protein or peptide sample is heated in 6 M hydrochloric acid under vacuum at 110°C for 18-24 h (1). The various methods of hydrolysis described here are summarized in Table 2.

Table 1 Stability of Amino Acid Residues and Peptide Bonds During Hydrolysis on 6 M Hydrochloric Acid at 110 C
Table 1 Advantages and Disadvantges of Various Hydrolysis Techniques

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore, S. and Stein, W. H. (1963) Chromatographic determination of amino acids by the use of automatic recording equipment. Methods Enzymol. 6, 819–831.

    Article  CAS  Google Scholar 

  2. Wilm, M., Shevchenko, A., Houthaeve, T., Brit, S., Schweigerer, L., Fotsis, T., and Mann, M. (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometer. Nature 379, 466–469.

    Article  PubMed  CAS  Google Scholar 

  3. Hunt, S. (1985) Degradation of amino acids accompanying in vitro protein hydrolysis, in Chemistry and Biochemistry of the Amino Acids (Barrett, G. C., ed.) Chapman and Hall, London, pp. 376–398.

    Google Scholar 

  4. Bidlingmeyer, B. A., Tarvin, T. L., and Cohen, S. A. (1986) Amino acid analysis of submicrogram hydrolysate samples, in Methods in Protein Sequence Analysis (Walsh, K., ed.) Humana Press, Totowa, NJ, pp. 229–244.

    Google Scholar 

  5. Dupont, D., Keim, P., Chui, A., Bozzini, M. L., and Wilson, K. J. (1988) Gas-phase hydrolysis for PTC-amino acids. Appl. Biosys. User Bull. 2, 1–10.

    Google Scholar 

  6. Matsubara, H. and Sasaki, R. M. (1969) High recovery of tryptophan from acid hydrolysis of proteins. Biochem. Biophys. Res. Commun. 35, 175–181.

    Article  PubMed  CAS  Google Scholar 

  7. Carne, A.F. Chemical Modifications of Proteins, Methods in Molecular Biology, Basic Protein and Peptide Protocols, vol. 32 (Walker, J. M., ed.) Humana Press, Totowa, NJ, pp. 311–320.

    Google Scholar 

  8. Hugli, T. E. and Moore, S. (1972) Determination of the tryptophan content of proteins by ion exchange chromatography of alkaline hydrolysis. J. Biol. Chem. 247(9), 2828–2834.

    PubMed  CAS  Google Scholar 

  9. Simpson, R. J., Neuberger, M. R., and Lui, T.-Y. (1976) Complete amino acid analysis of proteins from a single hydrolysate. J. Biol. Chem. 251, 1936–1940.

    PubMed  CAS  Google Scholar 

  10. Strydom, D. J., Anderson, T. T., Apostal, I., Fox, W. J., Paxton, R. J., and Crabb, J. W. (1993) Cysteine and tryptophan amino acid analysis of ABRF92-AAA, in Techniques in Protein Chemistry IV (Angeletti, R.H., ed.) Academic Press, San Diego, CA, pp. 279–288.

    Google Scholar 

  11. Chiou, S. H. and Wang, K.-T. (1990) A rapid and novel means of protein hydrolysis by microwave irradiation using Teflon-Pyrex tubes, in Current Research in Protein Chemistry, vol. 3 (Villafranca, J. J., ed.) Academic Press, San Diego, CA, pp 3–10.

    Google Scholar 

  12. Gilman, L. B. and Woodward, C. (1990) An evaluation of microwave heating for the hydrolysis of proteins, in Current Research in Protein Chemistry, vol. 3 (Villafranca, J. J., ed.) Academic Press, San Diego, CA, pp. 23–26.

    Google Scholar 

  13. Capony, J.-P. and Demaille, J. G. (1983) A rapid microdetermination of phosphoserine, phosphothreonine and phosphotyrosine in proteins by automatic cation exchange on a conventional amino acid analyser. Anal. Biochem. 128, pp. 206–212.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Davidson, I. (2003). Hydrolysis of Samples for Amino Acid Analysis. In: Smith, B.J. (eds) Protein Sequencing Protocols. Methods in Molecular Biology™, vol 211. Humana Press. https://doi.org/10.1385/1-59259-342-9:111

Download citation

  • DOI: https://doi.org/10.1385/1-59259-342-9:111

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-975-9

  • Online ISBN: 978-1-59259-342-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics