Skip to main content

Large Scale Production of Recombinant Antibodies by Utilizing Cellulose-Binding Domains

  • Protocol
Recombinant Antibodies for Cancer Therapy

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 207))

  • 903 Accesses

Abstract

Many recombinant proteins, particularly proteins with diagnostic and therapeutic potential such as antibodies, lymphokines, receptors, enzymes, and enzyme-inhibitors, are being produced from transformed host cells containing recombinant DNA. The host cells are transformed with an expression vector containing genes encoding for the proteins of interest, and then are cultured under conditions that favor the production of the desired protein. When Escherichia coli is used for the expression of recombinant proteins, the heterologous protein produced often precipitates within the cell to form refractile (inclusion) bodies. For the isolation of the recombinant protein in the native (biologically active) state, it should be separated from cell debris, solubilized with a chaotropic agent such as high concentrations of urea or guanidinium hydrochloride, then refolded by gradual removal of the denaturant (reviewed in ref. 1). In cases where the native state of the protein is dependent on the formation of disulfide bonds, the protein is reduced while in the denatured state by addition of reducing agents. The formation of disulfide bonds of the protein during the refolding process is facilitated by redox-shuffling induced by the inclusion of reducing and oxidizing agents in the refolding buffer (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lilie H., Schwarz E., and Rudolph R. (1998). Advances in refolding of proteins produced in E. coli. Curr. Opin. Biotechnol. 9, 497–501.

    Article  PubMed  CAS  Google Scholar 

  2. Buchner J., Pastan I., and Brinkmann U. (1992). A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal. Biochem. 205, 263–270.

    Article  PubMed  CAS  Google Scholar 

  3. Skerra A. (1993). Bacterial expression of immunoglobulin fragments. Curr. Opin. Immunol. 5, 256–262.

    Article  PubMed  CAS  Google Scholar 

  4. Kreitman R. J. and Pastan I. (1997). Immunotoxins for targeting cancer and autoimmune disease, in Antibody Therapeutics (Harris W. J. and Adair J. R., eds.) CRC Press Boca Raton, FL, pp. 33–52.

    Google Scholar 

  5. Yarranton G. (1997). Antibodies as carriers for drugs and radioisotopes, in Antibody Therapeutics (Harris W. J. and Adair J. R., eds.) CRC Press Boca Raton, FL, pp. 53–72.

    Google Scholar 

  6. Benhar I. and Pastan I. (1997). Tumor targeting by antibody-drug conjugates, in Antibody Therapeutics (Harris W. J. and Adair J. R., eds) CRC Press Boca Raton, FL, pp. 73–85.

    Google Scholar 

  7. Kiefhaber T., Rudolph R., Kohler H. H., and Buchner J. (1991). Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding andaggregation. Biotechnology (NY) 9, 825–829.

    Article  CAS  Google Scholar 

  8. Guise A. D., West S. M., and Chaudhuri J. B. (1996). Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies. Mol. Biotechnol. 6, 53–64.

    Article  PubMed  CAS  Google Scholar 

  9. Fenton W. A., and Horwich A. L. (1997). GroEL-mediated protein folding. Protein Sci. 6, 743–760.

    Article  PubMed  CAS  Google Scholar 

  10. Creighton T. E. (1985). Folding of proteins adsorbed reversibly to ion-exchange resins, in UCLA Symposia on Molecular and Cellular Biology New Series, vol. 39 (Oxender D. L., ed.), Liss, Inc. New York, pp. 249–258.

    Google Scholar 

  11. Glansbeek H. L., van Beuningen H. M., Vitters E. L., van der Kraan P. M., and van den Berg W. B. (1998). Expression of recombinant human soluble type II transforming growth factor-beta receptor in Pichia pastoris and Escherichia coli: two powerful systems to express a potent inhibitor of transforming growth factor-beta. Protein Exp. Purif. 12, 201–207.

    Article  CAS  Google Scholar 

  12. Stempfer G., Holl-Neugebauer B., and Rudolph R. (1996). Improved refolding of an immobilized fusion protein. Nat. Biotechnol. 14, 329–34.

    Article  PubMed  CAS  Google Scholar 

  13. Garel J-R. (1992). Large multidomain and multisubunit proteins, in Protein Folding (Creighton T. E., ed.), W. H. Freeman and Company NY, pp. 405–454.

    Google Scholar 

  14. Bayer E. A., Morag E., and Lamed R. (1994). The cellulosome: a treasuretrove for biotechnology. Trends Biotechnol. 12, 379–386.

    Article  PubMed  CAS  Google Scholar 

  15. Ong E., Greenwood J. M., Gilkes N. R., Kilburn D. G., Miller R. C. J., and Warren R. A. J. (1989). The cellulose-binding domains of cellulases: tools for biotechnology. Trends Biotechnol. 7, 239–243.

    Article  CAS  Google Scholar 

  16. Assouline Z., Shen H., Kilburn D. G., and Warren R. A. J. (1993). Production and properties of a Factor-X-cellulose binding domain fusion protein. Protein Eng. 6, 787–792.

    Article  PubMed  CAS  Google Scholar 

  17. Ramirez C., Fung J., Miller R. C. J., Warren R. A. J., and Kilburn D. G. (1993). A bifunctional affinity linker to couple antibodies to cellulose. Bio/Technology 11, 1570–1573.

    Article  PubMed  CAS  Google Scholar 

  18. Shoseyov O. and Karmely Y. (1995) Kits and methods of detection using cellulose binding domain fusion proteins. US Patent Application No. 460, 458.

    Google Scholar 

  19. Morag E., Bayer E. A., and Lamed R. (1992). Affinity digestion for the near-total recovery of purified cellulosome from Clostridium thermocellum. Enzyme Microb. Technol. 14, 289–292.

    Article  CAS  Google Scholar 

  20. Berdichevsky Y., Ben-Zeev E., Lamed R., and Benhar I. (1999). Phage display of a cellulose binding domain from Clostridium thermocellum and its application as a tool for antibody engineering. J. Immunol. Methods 228, 151–162.

    Article  PubMed  CAS  Google Scholar 

  21. Berdichevsky Y., Lamed R., Frenkel D., Gophna U., Bayer E. A., Yaron S., et al. (1999). Matrix-assisted refolding of single-chain Fv-cellulose binding domain fusion proteins. Protein Expr. Purif. 17, 249–259.

    Article  PubMed  CAS  Google Scholar 

  22. Tsumoto K., Shinoki K., Kondo H., Uchikawa M., Juji T., and Kumagai I. (1998). Highly efficient recovery of functional single-chain Fv fragments from inclusion bodies overexpressed in Escherichia coli by controlled introduction of oxidizing reagent-application to a human single-chain Fv fragment. J. Immunol. Methods 219, 119–129.

    Article  PubMed  CAS  Google Scholar 

  23. Brizzard B. L., Chubet R. G., and Vizard D. L. (1994). Immunoaffinity purification of FLAG epitope-tagged bacterial alkaline phosphatase using a novel monoclonal antibody and peptide elution. Biotechniques 16, 730–735.

    PubMed  CAS  Google Scholar 

  24. Sambrook J. L., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. 1989. Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY.

    Google Scholar 

  25. Hoogenboom H. R. and Winter G (1992). By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. 227, 381–388

    Article  PubMed  CAS  Google Scholar 

  26. Benhar I., Tamarkin A., Marash L., Berdichevsky Y., Yaron S., Shoham Y., et al. (2001). Phage display of cellulose binding domains for biotechnological application, in Glycosyl Hydrolases for Biomass Conversion. ACS Symposium Series 769 (Himmel M.E., Baker J. O., and Saddler J. N., eds.), American Chemical Society Washington, DC, pp. 168–189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Benhar, I., Berdichevsky, Y. (2003). Large Scale Production of Recombinant Antibodies by Utilizing Cellulose-Binding Domains. In: Welschof, M., Krauss, J. (eds) Recombinant Antibodies for Cancer Therapy. Methods in Molecular Biology™, vol 207. Humana Press. https://doi.org/10.1385/1-59259-334-8:443

Download citation

  • DOI: https://doi.org/10.1385/1-59259-334-8:443

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-918-6

  • Online ISBN: 978-1-59259-334-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics