Skip to main content

Construction and Characterization of RNase-Based Targeted Therapeutics

  • Protocol
Recombinant Antibodies for Cancer Therapy

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 207))

  • 894 Accesses

Abstract

Cell targeting agents such as antibodies, antibody fragments (sFvs), or growth factors have been conjugated or genetically fused to a variety of plant and bacterial toxins. These targeted therapeutics, termed “immunotoxins,” have been evaluated for their clinical efficacy in the treatment of cancer, AIDS, and immunological diseases (1,2). Development of potentially promising clinical results, however, have been hampered by problems of toxicity and immunogenicity owing to the foreign proteins (38). Although the development of humanized antibodies has alleviated some of these effects (9,10), the toxins still remain a problem. In this regard the use of human proteins as components of the immunotoxin are highly desirable (reviewed in ref. 11). Human RNases such as EDN, angiogenin and pancreatic RNase A are not toxic to cells yet when linked chemically or fused genetically to cell surfacebinding ligands have potent anti-tumor effects both in vitro and in vivo (1223). Furthermore in vivo experiments demonstrate that the RNase-based therapeutics cause fewer nonspecific toxic or immunogenic side effects than plant and bacterial toxins (22,23 and reviewed in ref. 11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vitetta E. S., Thorpe P. E., and Uhr J. W. (1993). Immunotoxins: magic bullets or misguided missiles. TiPS 14, 148–154.

    PubMed  CAS  Google Scholar 

  2. Pastan I. (1997). Targeted therapy of cancer with recombinant immunotoxins. Biochim. Biophys. Acta 1333, C1–C6.

    PubMed  CAS  Google Scholar 

  3. Sawler D. L., Bartholomew R. M., Smith L. M., and Dillman R. (1985). Human immune response to multiple injections of murine monoclonal IgG. J. Immunol. 135, 1530–1535.

    Google Scholar 

  4. Schroff R. W., Foon K. A., Beatty S. M., Oldham R., and Morgan A. (1985). Human anti-murine immunoglobulin response in patients receiving monoclonal antibody therapy. Cancer Res. 45, 879–885.

    PubMed  CAS  Google Scholar 

  5. Harkonen S., Stoudemire J., Mischak R., Spitler L., Lopez H., and Scannon P. (1987). Toxicity and immunogenicity of monoclonal antimelanoma antibody-ricin A chain immunotoxins in rats. Cancer Res. 47, 1377–1385.

    PubMed  CAS  Google Scholar 

  6. Rybak S. M. and Youle R. J. (1991). Clinical use of immunotoxins: monoclonal antibodies conjugated to protein toxins. Immunol. Allergy Clin. N. Am. 11, 359–380.

    Google Scholar 

  7. Soler-Rodriguez A. M., Ghetie M.-A., Oppenheimer-Marks N., Uhr J. W., and Vitetta E. S. (1993). Ricin A-chain and ricin A-chain immunotoxins rapidly damage human endothelial cells: Implications for vascular leak syndrome. Exp. Cell Res. 206, 227–234.

    Article  PubMed  CAS  Google Scholar 

  8. Thrush G. R., Lark L. R., Clinchy B. C., and Vitetta E. S. (1996). Immunotoxins: An Update. Ann. Rev. Immunol. 14, 49–71.

    Article  CAS  Google Scholar 

  9. Khazaeli M. B., Conry R. M., and LoBuglio A. F. (1994). Human immune response to monoclonal antibodies. J. Immunother. 15, 42–52.

    Article  CAS  Google Scholar 

  10. Stephens S., Emtage S., Vetterlein O., Chaplin L., Bebbington C., Nesbitt A., et al. (1995). Comprehensive pharmacokinetics of a humanized antibody and analysis of residual anti-idiotypic responses. Immunology 85, 668–674.

    PubMed  CAS  Google Scholar 

  11. Rybak S. M. and Newton D. L. (1999). Immunoenzymes, in Antibody Fusion Proteins (Chamow S. M. and Ashkenazi A., eds.), John Wiley & Sons, New York, NY, pp. 53–110.

    Google Scholar 

  12. Rybak S. M., Saxena S. K., Ackerman E. J., and Youle R. J. (1991). Cytotoxic potential of ribonuclease and ribonuclease hybrid proteins. J. Biol. Chem. 266, 21,202–21,207.

    PubMed  CAS  Google Scholar 

  13. Newton D. L., Ilercil O., Laske D. W., Oldfield E., Rybak S. M., and Youle R. J. (1992). Cytotoxic ribonuclease chimeras: Targeted tumoricidal activity in vitro and in vivo. J. Biol. Chem. 267, 19,572–19,578.

    PubMed  CAS  Google Scholar 

  14. Jinno H., Ueda M., Ozawa S., Kikuchi K., Ikeda T., Enomoto K., and Kitajima M. (1996). Epidermal growth factor receptor-dependent cytotoxic effect by an EGF-ribonuclease conjugate on human cancer cell lines: a trial for less immunogenic chimeric toxin. Can. Chemother. Pharmacol. 38, 303–308.

    Article  CAS  Google Scholar 

  15. Newton D. L., Nicholls P. J., Rybak S. M., and Youle R. J. (1994). Expression and characterization of recombinant human eosinophil-derived neurotoxin and eosinophilderived neurotoxin-anti-transferrin receptor sFv. J. Biol. Chem. 269, 26,739–26,745.

    PubMed  CAS  Google Scholar 

  16. Zewe M., Rybak S. M., Dubel S., Coy J. F., Welschof M., Newton D. L., and Little M. (1997). Cloning and cytotoxicity of a human pancreatic RNase immunofusion. Immunotechnology 3, 127–136.

    Article  PubMed  CAS  Google Scholar 

  17. Psarras K., Ueda M., Yamamura T., Ozawa S., Kitajima M., Aiso S., et al. (1998). Human pancreatic RNase1-human epidermal growth factor fusion: an entirely human immunotoxin analog with cytotoxic properties against squamous cell carcinomas. Prot. Eng. 11, 1285–1292.

    Article  CAS  Google Scholar 

  18. Yoon J. M., Han S. H., Kown O. B., Kim S. H., Park M. H., and Kim B. K. (1999). Cloning and cytotoxicity of fusion proteins of EGF and angiogenin. Life Sci. 64, 1435–1445.

    Article  PubMed  CAS  Google Scholar 

  19. Newton D. L., Xue Y., Olson K. A., Fett J. W., and Rybak S. M. (1996). Angiogenin single-chain immunofusions: Influence of peptide linkers and spacers between fusion protein domains. Biochemistry 35, 545–553.

    Article  PubMed  CAS  Google Scholar 

  20. Rybak S. M., Hoogenboom H. R., Meade H. M., Raus J. C., Schwartz D., and Youle R. J. (1992). Humanization of immuntoxins. Proc. Natl. Acad. Sci. USA 89, 3165–3169.

    Article  PubMed  CAS  Google Scholar 

  21. Futami J., Seno M., Ueda M., Tada H., and Yamada H. (1999). Inhibition of cell growth by a fused protein of human ribonuclease 1 and human basic fibroblast growth factor. Prot. Eng. 12, 1013–1019.

    Article  CAS  Google Scholar 

  22. Newton D. L., Pollock D., DiTullio P., Echelard Y., Harvey M., Wilburn B., et al. (2000). Functional properties of human ribonuclease fusion proteins expressed in Escherichia coli or transgenic mice. J. Int. Soc. Tumor Targ. 1, 70–81.

    Google Scholar 

  23. Newton D. L., Hansen H. J., Mikulski S. M., Goldenberg D. M., and Rybak S. M. (2001). Potent and specific antitumor effects of an anti-CD22 targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin’s lymphoma. Blood 97, 528–535.

    Article  PubMed  CAS  Google Scholar 

  24. Horton R. M., Cai Z. L., Ho S. N., and Pease L. R. (1990). Gene splicing by overlap exension: tailor made genes using the polymerase chain reaction. BioTechniques 8, 528–535.

    PubMed  CAS  Google Scholar 

  25. Studier F. W., Rosenberg A. H., Dunn J. J., and Dubendorff J. W. (1990). Use of T RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89.

    Article  PubMed  CAS  Google Scholar 

  26. Futami J., Tsushima Y., Tada H., Seno M., and Yamada H. (2000). Convenient and efficient in vitro folding of disulfide-containing globular protein from crude bacterial inclusion bodies. J. Biochem (Tokyo) 127, 435–441.

    CAS  Google Scholar 

  27. Seno M., DeSantis M., Kannan S., Bianco C., Tada H., Kim N., et al. (1998). Purification and characterization of a recombinant human cripto-1 protein. Growth Factors 15, 215–229.

    Article  PubMed  CAS  Google Scholar 

  28. Inoue M., Akimaru J., Nishikawa T., Seki N., and Yamada H. (1998). A new derivatizing agent, trimethylammoniopropyl methanethiosulphonate, is efficient for preparation of recombinant brain-derived neurotrophic factor from inclusion bodies. Biotechnol. Appl. Biochem. 28, 207–213.

    PubMed  CAS  Google Scholar 

  29. Terzyan S. S., Peracaula R., de Llorens R., Tsushima Y., Yamada H., Seno M., et al. (1999). The three-dimensional structure of human RNase 4, unliganded and complexed with d(Up), reveals the basis for its uridine selectivity. J. Mol. Biol. 285, 205–214.

    Article  PubMed  CAS  Google Scholar 

  30. Mallorqui-Fernandez G., Pous J., Peracaula R., Aymami J., Maeda T., Tada H., et al. (2000). Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 A resolution. J. Mol. Biol. 300, 1297–1307.

    Article  PubMed  CAS  Google Scholar 

  31. Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  32. Harlow E. and Lane D. (1988) Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  33. Bond M. D. (1988). An in vitro binding assay for angiogenin using placental ribonuclease inhibitor. Anal. Biochem. 173, 166–173.

    Article  PubMed  CAS  Google Scholar 

  34. Gart J., Krewski D., Lee P., Tarone R., and Wahrendorf J. (1986) Statistical Methods in Cancer Research. International Agency for Research on Cancer, NY.

    Google Scholar 

  35. Tai M. S., Mudgett-Hunter M., Levinson D., Wu G.-M., Haber E., Oppermann H., and Huston J. S. (1990). A bifunctional fusion protein containing Fc-binding fragment B of staphylococcal protein A amino terminal to antidigoxin single-chain Fv. Biochemistry 29, 8024–8030.

    Article  PubMed  CAS  Google Scholar 

  36. Buchner J., Pastan I., and Brinkmann U. (1992). A method for increasing the yield of properly folded recombinant fusion proteins: Single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal. Biochem. 205, 263–270.

    Article  PubMed  CAS  Google Scholar 

  37. Crothers D. M. and Metzger H. (1972). The influence of polyvalency on the binding properties of antibodies. Immunochem. 9, 341–357.

    Article  CAS  Google Scholar 

  38. Rosenberg H. F. and Dyer K. D. (1995). Eosinophil cationic protein and eosinophilderived neurotoxin. Evolution of novel function in a primate ribonuclease gene family. J. Biol. Chem. 270, 21,539–21,544.

    Article  PubMed  CAS  Google Scholar 

  39. Giovanella B. C., Stehlin J. S., Shepard R. C., and Williams L. J. (1979). Hyperthermic treatment of human tumors heterotransplanted in nude mice. Cancer Res. 39, 2236–2241.

    PubMed  CAS  Google Scholar 

  40. Russo N., Nobile V., DiDonato A., Riordan J. F., and Valee B. L. (1996). The C-terminal region of human angiogenin has a dual role in enzymatic activity. Proc. Natl. Acad. Sci. USA 93, 3243–3247.

    Article  PubMed  CAS  Google Scholar 

  41. Mosimann S. C., Ardelt W., and James M. N. G. (1994). Refined 1.7 A X-ray crystallographic structure of P-30 protein, an amphibian ribonuclease with anti-tumor activity. J. Mol. Biol. 236, 1141–1153.

    Article  PubMed  CAS  Google Scholar 

  42. Boix E., Wu Y., Vasandani V. M., Saxena S. K., Ardelt W., Ladner J., and Youle R. J. (1996). Role of the N terminus in RNase A homologues: Differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. J. Mol. Biol. 257, 992–1007.

    Article  PubMed  CAS  Google Scholar 

  43. Newton D. L., Xue Y., Boque L., Wlodawer A., Kung H. F., and Rybak S. M. (1997). Expression and characterization of a cytotoxic human-frog chimeric ribonuclease: Potential for cancer therapy. Protein Eng. 10, 463–470.

    Article  PubMed  CAS  Google Scholar 

  44. Wehrli W., Knusel F., Schmid K., and Staehelin M. (1968). Interaction of rifamycin with bacterial RNA polymerase. Proc. Natl. Acad. Sci. USA 61, 667–673.

    Article  PubMed  CAS  Google Scholar 

  45. Goldenberg D. M., Horowitz J. A., Sharkey R. M., Hall T. C., Murthy S., Goldenberg H., et al. (1991). Targeting, dosimetry, and radioimmunotherapy of B-cell lymphomas with iodine-131-labeled LL2 monoclonal antibody. J. Clin. Oncol. 9, 548–564.

    PubMed  CAS  Google Scholar 

  46. Ghetie M. A. J., Richardson J., Tucker T., Jones D., Uhr J. W., and Vitetta E. S. (1991). Antitumor activity of Fab′ and IgG-anti-CD22 immunotoxins in disseminated human B lymphoma grown in mice with severe combined immunodeficiency disease effect on tumor cells in extranodal sites. Cancer Res. 51, 5876–5880.

    PubMed  CAS  Google Scholar 

  47. Kreitman R. J., Hansen H. J., Jones A. L., FitzGerald D. J. P., Goldenberg D. M., and Pastan I. (1993). Pseudomonas Exotoxin-based immunotoxins containing the antibody LL2 or LL2-Fab’ induce regression of subcutaneous human B-cell lymphoma in mice. Cancer Res. 53, 819–825.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Newton, D.L., Futami, J., Ruby, D., Rybak, S.M. (2003). Construction and Characterization of RNase-Based Targeted Therapeutics. In: Welschof, M., Krauss, J. (eds) Recombinant Antibodies for Cancer Therapy. Methods in Molecular Biology™, vol 207. Humana Press. https://doi.org/10.1385/1-59259-334-8:283

Download citation

  • DOI: https://doi.org/10.1385/1-59259-334-8:283

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-918-6

  • Online ISBN: 978-1-59259-334-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics