Skip to main content

Tailoring Kinetics of Antibodies Using Focused Combinatorial Libraries

  • Protocol
Recombinant Antibodies for Cancer Therapy

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 207))

Abstract

Antibodies have been used extensively for diagnostic applications for decades. Antibodies also can be used to target specific cells or specific molecules to produce agonist, antagonist, or neutralizing activity. Antibody therapies have been applied successfully in the treatment of several human diseases (1). The advantages of antibodies over other molecules are that they have high affinity for their targets and they bind to targets with high specificity. Antibodies, with six highly diversified complementaritydetermining regions (CDRs) supported by stable β-sheet framework regions, are capable of binding virtually any molecule including proteins, carbohydrates, nucleic acids, and haptens. The intrinsic features of specificity and affinity when combined offer a great advantage in the discovery of a wide-range of lead drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glennie M. J. and Johnson P. W. M. (2000). Clinical trials of antibody therapy. Immunol. Today 21, 403–410.

    Article  PubMed  CAS  Google Scholar 

  2. Smith G. P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.

    Article  PubMed  CAS  Google Scholar 

  3. McCafferty J., Griffiths A. D., Winter G., and Chiswell D. J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.

    Article  PubMed  CAS  Google Scholar 

  4. Barbas C. F., Kang A. S., Lerner R. A., and Benkovic S. J. (1991). Assembly of combinatorial libraries on phage surfaces: The gene III site. Proc. Natl. Acad. Sci. USA 88, 7978–7982.

    Article  PubMed  CAS  Google Scholar 

  5. Chang C. N., Landolfi N. F., and Queen C. (1991). Expression of antibody Fab domains on bacteriophage surfaces. Potential use for antibody selection. J. Immunol. 147, 3610–3614.

    PubMed  CAS  Google Scholar 

  6. Hoogenboom H. R., Griffiths A. D., Johnson K. S., Chiswell D. J., Hudson P., and Winter G. (1991). Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19, 4133–4137.

    Article  PubMed  CAS  Google Scholar 

  7. Burton D. R., Barbas C. F., Persson M. A. A., Koenig S., Chanock R. M., and Lerner R. A. (1991). A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Sci. USA 88, 10,134–10,137.

    Article  PubMed  CAS  Google Scholar 

  8. Zebedee S. L., Barbas C. F., Hom Y.-L., Caothien R. H., Graff R., DeGraw J., et al. (1992). Human combinatorial antibody libraries to hepatitis B surface antigen. Proc. Natl. Acad. Sci. USA 89, 3175–3179.

    Article  PubMed  CAS  Google Scholar 

  9. Marks J. D., Hoogenboom H. R., Bonnert T. P., McCafferty J., Griffiths A. D., and Winter G. (1991). By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581–597.

    Article  PubMed  CAS  Google Scholar 

  10. Griffiths A. D., Malmqvist M., Marks J. D., Bye J. M., Embleton M. J., McCafferty J., et al. (1993). Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12, 725–734.

    PubMed  CAS  Google Scholar 

  11. Barbas C. F., Bain J. D., Hoesktra D. M., and Lerner R. A. (1992). Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc. Natl. Acad. Sci. USA 89, 4457–4461.

    Article  PubMed  CAS  Google Scholar 

  12. Hoogenboom H. R. and Winter G. (1992). By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. 227, 381–388.

    Article  PubMed  CAS  Google Scholar 

  13. Foote J. and Milstein C. (1991). Kinetic maturation of an immune response. Nature 352, 530–523.

    Article  PubMed  CAS  Google Scholar 

  14. Perelson A. S. and Oster G. F. (1979). Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination. J. Theor. Biol. 81, 645–670.

    Article  PubMed  CAS  Google Scholar 

  15. Vaughan T. J., Williams A. J., Pritchard K., Osbourn J. K., Pope A. R., Earnshaw J. C., et al. (1996). Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314.

    Article  PubMed  CAS  Google Scholar 

  16. Sheets M. D., Amersdorfer P., Finnern R., Sargent P., Lindovist E., Schier R., et al. (1998). Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95, 6157–6162.

    Article  PubMed  CAS  Google Scholar 

  17. de Haard H. J., van Neer N., Reurs A., Hufton S. E., Roovers R. C., Henderikx P., et al. (1999). A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274, 18,218–18,230.

    Article  PubMed  Google Scholar 

  18. Sblattero D. and Bradbury A. (2000). Exploiting recombination in single bacteria to make large phage antibody libraries. Nat. Biotechnol. 18, 75–80.

    Article  PubMed  CAS  Google Scholar 

  19. Griffiths A. D., Williams S. C., Hartley O., Tomlinson I. M., Waterhouse P., Crosby W. L., et al. (1994). Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260.

    PubMed  CAS  Google Scholar 

  20. Knappik A., Ge L., Honegger A., Pack P., Fischer M., Wellnhofer G., et al. (2000). Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 296, 57–86.

    Article  PubMed  CAS  Google Scholar 

  21. de Bruin R., Spelt K., Mol J., Koes R., and Quattrocchio F. (1999). Selection of highaffinity phage antibodies from phage display libraries. Nature Biotechnol. 17, 397–399.

    Article  Google Scholar 

  22. Usinger W. R. and Lucas A. H. (1999). Avidity as a determinant of the protective efficacy of human antibodies to pneumococcal capsular polysaccharides. Infect. Immun. 67, 2366–2370.

    PubMed  CAS  Google Scholar 

  23. Johnson S., Griego S. D., Pfarr D. S., Doyle M. L., Woods R., Carlin D., et al. (1999). A direct comparison of the activities of two humanized respiratory syncytial virus monoclonal antibodies: MEDI-493 and RSHZl9. J. Infect. Dis. 180, 35–40.

    Article  PubMed  CAS  Google Scholar 

  24. Mita H., Yasueda H., and Akiyama K. (2000). Affinity of IgE antibody to antigen influences allergen-induced histamine release. Clin. Exp. Allergy 30, 1583–1589.

    Article  PubMed  CAS  Google Scholar 

  25. Parren P. W. H. I., Mondor I., Naniche D., Ditzel H. J., Klasse P. J., Burton D. R., and Sattentau Q. J. (1998). Neutralization of human immunodeficiency virus type 1 by anti body to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol. 72, 3512–3519.

    PubMed  CAS  Google Scholar 

  26. Gram H., Marconi L. A., Barbas C. F., Collet T. A., Lerner R. A., and Kang A. S. (1992). In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc. Natl. Acad. Sci. USA 89, 3576–3580.

    Article  PubMed  CAS  Google Scholar 

  27. Yelton D. E., Rosok M. J., Cruz G., Cosand W. L., Bajorath J., et al. (1995). Affinity maturation of the BR96 anti-carcinoma antibody by codon-based mutagenesis. J. Immunol. 155, 1994–2004.

    PubMed  CAS  Google Scholar 

  28. Yang W. P., Green K., Pinz-Sweeney S., Briones A. T., Burton D. R., and Barbas C. F. (1995). CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol. 254, 392–403.

    Article  PubMed  CAS  Google Scholar 

  29. Schier R., Bye J., Apell G., McCall A., Adams G. P., Malmqvist M., et al. (1996). Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinitydriven selection. J. Mol. Biol. 255, 28–43.

    Article  PubMed  CAS  Google Scholar 

  30. Schier R., McCall A., Adams G. P., Marshall K. W., Merritt H., Yim M., et al. (1996). Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol. 263, 551–567.

    Article  PubMed  CAS  Google Scholar 

  31. Thompson J., Pope T., Tung J. S., Chan C., Hollis G., Mark G., and Johnson K. S. (1996). Affinity maturation of a high-affinity human monoclonal antibody against the third hypervariable loop of human immunodeficiency virus: use of phage display to improve affinity and broaden strain reactivity. J. Mol. Biol. 256, 77–88.

    Article  PubMed  CAS  Google Scholar 

  32. Schier R., Balint R. F., McCall A., Apell G., Larrick J. W., and Marks J. D. (1996). Identification of functional and structural amino-acid residues by parsimonious mutagenesis. Gene 169, 147–155.

    Article  PubMed  CAS  Google Scholar 

  33. Wu H., Beuerlein G., Nie Y., Smith H., Lee B. A., Hensler M., et al. (1998). Stepwise in vitro affinity maturation of Vitaxin, an alphav beta3-specific humanized MAb. Proc. Natl. Acad. Sci. USA 95, 6037–6042.

    Article  PubMed  CAS  Google Scholar 

  34. Chowdhury P. S. and Pastan I. (1999). Improving antibody affinity by mimicking somatic hypermutation in vitro. Nature Biotechnol. 17, 568–572.

    Article  CAS  Google Scholar 

  35. Boder E. T., Midelfort K. S., and Wittrup K. D. (2000). Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc. Natl. Acad. Sci. USA 97, 10,701–10,705.

    Article  PubMed  CAS  Google Scholar 

  36. Adams G. P., Schier R., Marshall K., Wolf E. J., McCall A. M., Marks J. D., and Weiner L. M. (1998). Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. 58, 485–490.

    PubMed  CAS  Google Scholar 

  37. Viti F., Tarli L., Giovannoni L., Zardi L., and Neri D. (1999). Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res. 59, 347–352.

    PubMed  CAS  Google Scholar 

  38. Adams G. P. and Schier R. (1999). Generating improved single-chain Fv molecules for tumor targeting. J. Immunol. Methods 231, 249–260.

    Article  PubMed  CAS  Google Scholar 

  39. Glaser S. M., Yelton D. E., and Huse W. D. (1992). Antibody engineering by codonbased mutagenesis in a filamentous phage vector system. J. Immunol. 149, 3903–3913.

    PubMed  CAS  Google Scholar 

  40. Martin F., Toniatti C., Salvati A. L., Ciliberto G., Cortese R., and Sollazzo M. (1996). Coupling protein design and in vitro selection strategies: improving specificity and affinity of a designed beta-protein IL-6 antagonist. J. Mol. Biol. 255, 86–97.

    Article  PubMed  CAS  Google Scholar 

  41. Hemminki A., Niemi S., Hoffren A. M., Hakalahti L., Soderlund H., and Takkinen K. (1998). Specificity improvement of a recombinant anti-testosterone Fab fragment by CDRIII mutagenesis and phage display selection. Protein Eng. 11, 311–319.

    Article  PubMed  CAS  Google Scholar 

  42. Chames P. and Baty D. (1998). Engineering of an anti-steroid antibody: amino acid substitutions change antibody fine specificity from cortisol to estradiol. Clin. Chem. Lab Med. 36, 355–359.

    Article  PubMed  CAS  Google Scholar 

  43. Willuda J., Honegger A., Waibel R., Schubiger P. A., Stahel R., Zangemeister-Wittke U., and Pluckthun A. (1999). High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Res. 59, 5758–5767.

    PubMed  CAS  Google Scholar 

  44. Griffiths G. M., Berek C., Kaartinen M., and Milstein C. (1984). Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature 312, 271–275.

    Article  PubMed  CAS  Google Scholar 

  45. Sandberg W. S. and Terwilliger T. C. (1993). Engineering multiple properties of a protein by combinatorial mutagenesis. Proc. Natl. Acad. Sci. USA 90, 8367–8371.

    Article  PubMed  CAS  Google Scholar 

  46. Moore J. C. and Arnold F. H. (1996). Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nature Biotechnol. 14, 458–467.

    Article  CAS  Google Scholar 

  47. Wells J. A., Cunningham B. C., Graycar T. P., and Estell D. A. (1987). Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Proc. Natl. Acad. Sci. USA 84, 5167–5171.

    Article  PubMed  CAS  Google Scholar 

  48. Wells J. A., Powers D. B., Bott R. R., Graycar T. P., and Estell D. A. (1987). Designing substrate specificity by protein engineering of electrostatic interactions. Proc. Natl. Acad. Sci. USA 84, 1219–1223.

    Article  PubMed  CAS  Google Scholar 

  49. Russell A. J. and Fersht A. R. (1987). Rational modification of enzyme catalysis by engineering surface charge. Nature 328, 496–500.

    Article  PubMed  CAS  Google Scholar 

  50. Huse W. D., Stinchcombe T. J., Glaser S. M., Starr L., Maclean M., et al. (1992). Application of a filamentous phage pVIII fusion protein system suitable for efficient production, screening, and mutagenesis of F(ab) antibody fragments. J. Immunol. 149, 3914–3920.

    PubMed  CAS  Google Scholar 

  51. Glaser S., Kristensson K., Chilton T., and Huse W. D. (1995). Engineering the antibody combining site by codon-based mutagenesis in a filamentous phage display system, in Antibody Engineering, 2nd ed. (Borrebaeck C. A. K., ed.), Oxford University Press, Oxford, pp. 117–131.

    Google Scholar 

  52. Kunkel T. A. (1985). Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82, 488–492.

    Article  PubMed  CAS  Google Scholar 

  53. Perlak F. J. (1990). Single step large scale site-directed in vitro mutagenesis using multiple oligonucleotides. Nucleic Acids Res. 18, 7457–7458.

    Article  PubMed  CAS  Google Scholar 

  54. Wu H., Nie Y., Huse W. D., and Watkins J. D. (1999). Humanization of a murine monoclonal antibody by simultaneous optimization of framework and CDR residues. J. Mol. Biol. 294, 151–162.

    Article  PubMed  CAS  Google Scholar 

  55. Wells J. A. (1990). Additivity of mutational effects in proteins. Biochemsitry 29, 8509–8517.

    Article  CAS  Google Scholar 

  56. Watkins J. D., Beuerlein G., Wu H., McFadden P. R., Pancook J. D., and Huse W. D. (1998). Discovery of human antibodies to cell surface antigens by capture lift screening of phage-expressed antibody libraries. Anal. Biochem. 256, 169–177.

    Article  PubMed  CAS  Google Scholar 

  57. Watkins J. D., Beuerlein G., Pecht G., McFadden P. R., Glaser S. M., and Huse W. D. (1997). Determination of the relative affinities of antibody fragments expressed in Escherichia coli by enzyme-linked immunosorbent assay. Anal. Biochem. 253, 37–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Wu, H., An, LL. (2003). Tailoring Kinetics of Antibodies Using Focused Combinatorial Libraries. In: Welschof, M., Krauss, J. (eds) Recombinant Antibodies for Cancer Therapy. Methods in Molecular Biology™, vol 207. Humana Press. https://doi.org/10.1385/1-59259-334-8:213

Download citation

  • DOI: https://doi.org/10.1385/1-59259-334-8:213

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-918-6

  • Online ISBN: 978-1-59259-334-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics