Tailoring Kinetics of Antibodies Using Focused Combinatorial Libraries

  • Herren Wu
  • Ling-Ling An
Part of the Methods in Molecular Biology™ book series (MIMB, volume 207)


Antibodies have been used extensively for diagnostic applications for decades. Antibodies also can be used to target specific cells or specific molecules to produce agonist, antagonist, or neutralizing activity. Antibody therapies have been applied successfully in the treatment of several human diseases (1). The advantages of antibodies over other molecules are that they have high affinity for their targets and they bind to targets with high specificity. Antibodies, with six highly diversified complementaritydetermining regions (CDRs) supported by stable β-sheet framework regions, are capable of binding virtually any molecule including proteins, carbohydrates, nucleic acids, and haptens. The intrinsic features of specificity and affinity when combined offer a great advantage in the discovery of a wide-range of lead drug candidates.


Periplasmic Space Beneficial Mutation Affinity Maturation Antibody Library Label Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Glennie M. J. and Johnson P. W. M. (2000). Clinical trials of antibody therapy. Immunol. Today 21, 403–410.PubMedCrossRefGoogle Scholar
  2. 2.
    Smith G. P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.PubMedCrossRefGoogle Scholar
  3. 3.
    McCafferty J., Griffiths A. D., Winter G., and Chiswell D. J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.PubMedCrossRefGoogle Scholar
  4. 4.
    Barbas C. F., Kang A. S., Lerner R. A., and Benkovic S. J. (1991). Assembly of combinatorial libraries on phage surfaces: The gene III site. Proc. Natl. Acad. Sci. USA 88, 7978–7982.PubMedCrossRefGoogle Scholar
  5. 5.
    Chang C. N., Landolfi N. F., and Queen C. (1991). Expression of antibody Fab domains on bacteriophage surfaces. Potential use for antibody selection. J. Immunol. 147, 3610–3614.PubMedGoogle Scholar
  6. 6.
    Hoogenboom H. R., Griffiths A. D., Johnson K. S., Chiswell D. J., Hudson P., and Winter G. (1991). Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19, 4133–4137.PubMedCrossRefGoogle Scholar
  7. 7.
    Burton D. R., Barbas C. F., Persson M. A. A., Koenig S., Chanock R. M., and Lerner R. A. (1991). A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Sci. USA 88, 10,134–10,137.PubMedCrossRefGoogle Scholar
  8. 8.
    Zebedee S. L., Barbas C. F., Hom Y.-L., Caothien R. H., Graff R., DeGraw J., et al. (1992). Human combinatorial antibody libraries to hepatitis B surface antigen. Proc. Natl. Acad. Sci. USA 89, 3175–3179.PubMedCrossRefGoogle Scholar
  9. 9.
    Marks J. D., Hoogenboom H. R., Bonnert T. P., McCafferty J., Griffiths A. D., and Winter G. (1991). By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581–597.PubMedCrossRefGoogle Scholar
  10. 10.
    Griffiths A. D., Malmqvist M., Marks J. D., Bye J. M., Embleton M. J., McCafferty J., et al. (1993). Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12, 725–734.PubMedGoogle Scholar
  11. 11.
    Barbas C. F., Bain J. D., Hoesktra D. M., and Lerner R. A. (1992). Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc. Natl. Acad. Sci. USA 89, 4457–4461.PubMedCrossRefGoogle Scholar
  12. 12.
    Hoogenboom H. R. and Winter G. (1992). By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. 227, 381–388.PubMedCrossRefGoogle Scholar
  13. 13.
    Foote J. and Milstein C. (1991). Kinetic maturation of an immune response. Nature 352, 530–523.PubMedCrossRefGoogle Scholar
  14. 14.
    Perelson A. S. and Oster G. F. (1979). Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination. J. Theor. Biol. 81, 645–670.PubMedCrossRefGoogle Scholar
  15. 15.
    Vaughan T. J., Williams A. J., Pritchard K., Osbourn J. K., Pope A. R., Earnshaw J. C., et al. (1996). Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314.PubMedCrossRefGoogle Scholar
  16. 16.
    Sheets M. D., Amersdorfer P., Finnern R., Sargent P., Lindovist E., Schier R., et al. (1998). Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95, 6157–6162.PubMedCrossRefGoogle Scholar
  17. 17.
    de Haard H. J., van Neer N., Reurs A., Hufton S. E., Roovers R. C., Henderikx P., et al. (1999). A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274, 18,218–18,230.PubMedCrossRefGoogle Scholar
  18. 18.
    Sblattero D. and Bradbury A. (2000). Exploiting recombination in single bacteria to make large phage antibody libraries. Nat. Biotechnol. 18, 75–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Griffiths A. D., Williams S. C., Hartley O., Tomlinson I. M., Waterhouse P., Crosby W. L., et al. (1994). Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260.PubMedGoogle Scholar
  20. 20.
    Knappik A., Ge L., Honegger A., Pack P., Fischer M., Wellnhofer G., et al. (2000). Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 296, 57–86.PubMedCrossRefGoogle Scholar
  21. 21.
    de Bruin R., Spelt K., Mol J., Koes R., and Quattrocchio F. (1999). Selection of highaffinity phage antibodies from phage display libraries. Nature Biotechnol. 17, 397–399.CrossRefGoogle Scholar
  22. 22.
    Usinger W. R. and Lucas A. H. (1999). Avidity as a determinant of the protective efficacy of human antibodies to pneumococcal capsular polysaccharides. Infect. Immun. 67, 2366–2370.PubMedGoogle Scholar
  23. 23.
    Johnson S., Griego S. D., Pfarr D. S., Doyle M. L., Woods R., Carlin D., et al. (1999). A direct comparison of the activities of two humanized respiratory syncytial virus monoclonal antibodies: MEDI-493 and RSHZl9. J. Infect. Dis. 180, 35–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Mita H., Yasueda H., and Akiyama K. (2000). Affinity of IgE antibody to antigen influences allergen-induced histamine release. Clin. Exp. Allergy 30, 1583–1589.PubMedCrossRefGoogle Scholar
  25. 25.
    Parren P. W. H. I., Mondor I., Naniche D., Ditzel H. J., Klasse P. J., Burton D. R., and Sattentau Q. J. (1998). Neutralization of human immunodeficiency virus type 1 by anti body to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol. 72, 3512–3519.PubMedGoogle Scholar
  26. 26.
    Gram H., Marconi L. A., Barbas C. F., Collet T. A., Lerner R. A., and Kang A. S. (1992). In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc. Natl. Acad. Sci. USA 89, 3576–3580.PubMedCrossRefGoogle Scholar
  27. 27.
    Yelton D. E., Rosok M. J., Cruz G., Cosand W. L., Bajorath J., et al. (1995). Affinity maturation of the BR96 anti-carcinoma antibody by codon-based mutagenesis. J. Immunol. 155, 1994–2004.PubMedGoogle Scholar
  28. 28.
    Yang W. P., Green K., Pinz-Sweeney S., Briones A. T., Burton D. R., and Barbas C. F. (1995). CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol. 254, 392–403.PubMedCrossRefGoogle Scholar
  29. 29.
    Schier R., Bye J., Apell G., McCall A., Adams G. P., Malmqvist M., et al. (1996). Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinitydriven selection. J. Mol. Biol. 255, 28–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Schier R., McCall A., Adams G. P., Marshall K. W., Merritt H., Yim M., et al. (1996). Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol. 263, 551–567.PubMedCrossRefGoogle Scholar
  31. 31.
    Thompson J., Pope T., Tung J. S., Chan C., Hollis G., Mark G., and Johnson K. S. (1996). Affinity maturation of a high-affinity human monoclonal antibody against the third hypervariable loop of human immunodeficiency virus: use of phage display to improve affinity and broaden strain reactivity. J. Mol. Biol. 256, 77–88.PubMedCrossRefGoogle Scholar
  32. 32.
    Schier R., Balint R. F., McCall A., Apell G., Larrick J. W., and Marks J. D. (1996). Identification of functional and structural amino-acid residues by parsimonious mutagenesis. Gene 169, 147–155.PubMedCrossRefGoogle Scholar
  33. 33.
    Wu H., Beuerlein G., Nie Y., Smith H., Lee B. A., Hensler M., et al. (1998). Stepwise in vitro affinity maturation of Vitaxin, an alphav beta3-specific humanized MAb. Proc. Natl. Acad. Sci. USA 95, 6037–6042.PubMedCrossRefGoogle Scholar
  34. 34.
    Chowdhury P. S. and Pastan I. (1999). Improving antibody affinity by mimicking somatic hypermutation in vitro. Nature Biotechnol. 17, 568–572.CrossRefGoogle Scholar
  35. 35.
    Boder E. T., Midelfort K. S., and Wittrup K. D. (2000). Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc. Natl. Acad. Sci. USA 97, 10,701–10,705.PubMedCrossRefGoogle Scholar
  36. 36.
    Adams G. P., Schier R., Marshall K., Wolf E. J., McCall A. M., Marks J. D., and Weiner L. M. (1998). Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. 58, 485–490.PubMedGoogle Scholar
  37. 37.
    Viti F., Tarli L., Giovannoni L., Zardi L., and Neri D. (1999). Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res. 59, 347–352.PubMedGoogle Scholar
  38. 38.
    Adams G. P. and Schier R. (1999). Generating improved single-chain Fv molecules for tumor targeting. J. Immunol. Methods 231, 249–260.PubMedCrossRefGoogle Scholar
  39. 39.
    Glaser S. M., Yelton D. E., and Huse W. D. (1992). Antibody engineering by codonbased mutagenesis in a filamentous phage vector system. J. Immunol. 149, 3903–3913.PubMedGoogle Scholar
  40. 40.
    Martin F., Toniatti C., Salvati A. L., Ciliberto G., Cortese R., and Sollazzo M. (1996). Coupling protein design and in vitro selection strategies: improving specificity and affinity of a designed beta-protein IL-6 antagonist. J. Mol. Biol. 255, 86–97.PubMedCrossRefGoogle Scholar
  41. 41.
    Hemminki A., Niemi S., Hoffren A. M., Hakalahti L., Soderlund H., and Takkinen K. (1998). Specificity improvement of a recombinant anti-testosterone Fab fragment by CDRIII mutagenesis and phage display selection. Protein Eng. 11, 311–319.PubMedCrossRefGoogle Scholar
  42. 42.
    Chames P. and Baty D. (1998). Engineering of an anti-steroid antibody: amino acid substitutions change antibody fine specificity from cortisol to estradiol. Clin. Chem. Lab Med. 36, 355–359.PubMedCrossRefGoogle Scholar
  43. 43.
    Willuda J., Honegger A., Waibel R., Schubiger P. A., Stahel R., Zangemeister-Wittke U., and Pluckthun A. (1999). High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Res. 59, 5758–5767.PubMedGoogle Scholar
  44. 44.
    Griffiths G. M., Berek C., Kaartinen M., and Milstein C. (1984). Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature 312, 271–275.PubMedCrossRefGoogle Scholar
  45. 45.
    Sandberg W. S. and Terwilliger T. C. (1993). Engineering multiple properties of a protein by combinatorial mutagenesis. Proc. Natl. Acad. Sci. USA 90, 8367–8371.PubMedCrossRefGoogle Scholar
  46. 46.
    Moore J. C. and Arnold F. H. (1996). Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nature Biotechnol. 14, 458–467.CrossRefGoogle Scholar
  47. 47.
    Wells J. A., Cunningham B. C., Graycar T. P., and Estell D. A. (1987). Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Proc. Natl. Acad. Sci. USA 84, 5167–5171.PubMedCrossRefGoogle Scholar
  48. 48.
    Wells J. A., Powers D. B., Bott R. R., Graycar T. P., and Estell D. A. (1987). Designing substrate specificity by protein engineering of electrostatic interactions. Proc. Natl. Acad. Sci. USA 84, 1219–1223.PubMedCrossRefGoogle Scholar
  49. 49.
    Russell A. J. and Fersht A. R. (1987). Rational modification of enzyme catalysis by engineering surface charge. Nature 328, 496–500.PubMedCrossRefGoogle Scholar
  50. 50.
    Huse W. D., Stinchcombe T. J., Glaser S. M., Starr L., Maclean M., et al. (1992). Application of a filamentous phage pVIII fusion protein system suitable for efficient production, screening, and mutagenesis of F(ab) antibody fragments. J. Immunol. 149, 3914–3920.PubMedGoogle Scholar
  51. 51.
    Glaser S., Kristensson K., Chilton T., and Huse W. D. (1995). Engineering the antibody combining site by codon-based mutagenesis in a filamentous phage display system, in Antibody Engineering, 2nd ed. (Borrebaeck C. A. K., ed.), Oxford University Press, Oxford, pp. 117–131.Google Scholar
  52. 52.
    Kunkel T. A. (1985). Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82, 488–492.PubMedCrossRefGoogle Scholar
  53. 53.
    Perlak F. J. (1990). Single step large scale site-directed in vitro mutagenesis using multiple oligonucleotides. Nucleic Acids Res. 18, 7457–7458.PubMedCrossRefGoogle Scholar
  54. 54.
    Wu H., Nie Y., Huse W. D., and Watkins J. D. (1999). Humanization of a murine monoclonal antibody by simultaneous optimization of framework and CDR residues. J. Mol. Biol. 294, 151–162.PubMedCrossRefGoogle Scholar
  55. 55.
    Wells J. A. (1990). Additivity of mutational effects in proteins. Biochemsitry 29, 8509–8517.CrossRefGoogle Scholar
  56. 56.
    Watkins J. D., Beuerlein G., Wu H., McFadden P. R., Pancook J. D., and Huse W. D. (1998). Discovery of human antibodies to cell surface antigens by capture lift screening of phage-expressed antibody libraries. Anal. Biochem. 256, 169–177.PubMedCrossRefGoogle Scholar
  57. 57.
    Watkins J. D., Beuerlein G., Pecht G., McFadden P. R., Glaser S. M., and Huse W. D. (1997). Determination of the relative affinities of antibody fragments expressed in Escherichia coli by enzyme-linked immunosorbent assay. Anal. Biochem. 253, 37–45.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Herren Wu
    • 1
  • Ling-Ling An
    • 1
  1. 1.MedImmune Inc.Gaithersburg

Personalised recommendations