Skip to main content

Heterologous Expression of Ion Channels

  • Protocol
Neurogenetics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 217))

  • 848 Accesses

Abstract

The use of recombinant DNA technology to clone, sequence, and express ion channels and transporters has powered an enormous acceleration in the understanding of structure-function relationships in these important proteins. Given that most ion channels reside in tissues that are largely inaccessible to direct recording techniques and the general paucity of continuous cell lines expressing defined populations of functional molecules, studying native channels is often difficult and impractical. However, the ability to introduce a recombinant complementary DNA (cDNA) selectively into cells normally devoid of highly expressed ion channels or transporters greatly facilitates the ability of scientists to study the function, subunit associations, regulation, and trafficking of these proteins. This approach has also enabled studies designed to investigate the role of ion channel mutations in inherited diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shih, T. M., Smith, R. D., Toro, L., and Goldin, A. L. (1998) High-level expression and detection of ion channels in Xenopus oocytes. Methods Enzymol. 293, 529–556.

    CAS  Google Scholar 

  2. Goldin, A. L. (1992) Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol. 207, 266–279.

    Article  PubMed  CAS  Google Scholar 

  3. Goldin, A. L. and Sumikawa, K. (1992) Preparation of RNA for injection into Xenopus oocytes. Methods Enzymol. 207 279–297.

    CAS  Google Scholar 

  4. Stuhmer, W. (1998) Electrophysiologic recordings from Xenopus oocytes. Methods Enzymol. 293, 280–300.

    CAS  Google Scholar 

  5. Sherman-Gold, R. (ed.), (1993) The Axon Guide. Axon Instruments, Inc., Foster City, CA, USA.

    Google Scholar 

  6. Barish, M. E. (1983) A transient calcium-dependent chloride current in the immature Xenopus oocyte. J. Physiol. (London) 342, 309–325.

    CAS  Google Scholar 

  7. Kowdley, G. C., Ackerman, S. J., John, E. J., Jones, L. R., and Moorman, J. R. (1994) Hyperpolarization-activated chloride currents in Xenopus oocytes. J. Gen. Physiol. 103, 217–230.

    Article  CAS  Google Scholar 

  8. Parker, I., and Miledi R. (1988) A calcium-independent chloride current activated by hyperpolarization in Xenopus oocytes. Proc. R. Soc. Lond. B. 233, 191–199.

    Article  CAS  Google Scholar 

  9. Landau, E. M., and Blitzer, R. D. (1994) Chloride current assay for phospholipase C in Xenopus oocytes. Methods Enzymol. 238, 140–154.

    CAS  Google Scholar 

  10. Tokimasa, T. and North, R. A. (1996) Effects of barium, lanthanum, and gadolinium on endogenous chloride and potassium currents in Xenopus oocytes. J. Physiol. (London) 496, 677–686.

    CAS  Google Scholar 

  11. Elsner, H. A., Honck, H. H., Willmann, F., Kreienkamp, H. J., and Iglauer, F. (2000) Poor quality of oocytes from Xenopus laevis used in laboratory experiments: prevention by use of antiseptic surgical technique and antibiotic supplementation. Comp. Med. 50, 206–211.

    PubMed  CAS  Google Scholar 

  12. Eppig, J. J. and Steckman, M. L. (1976) Comparison of exogenous energy sources for in vitro maintenance of follicle cell-free Xenopus laevis oocytes. In Vitro 12, 173–179.

    CAS  Google Scholar 

  13. Dumont, J. N. (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136, 153–179

    Article  PubMed  CAS  Google Scholar 

  14. Margolskee, R. F., McHendry-Rinde, B., and Horn, R. (1993) Panning transfected cells for electrophysiological studies. BioTechniques 15, 906–911.

    PubMed  CAS  Google Scholar 

  15. Jurman, M. E., Boland, L. M., Liu, Y., and Yellen, G. (1994) Visual identification of individual transfected cells for electrophysiology using antibody-coated beads. BioTechniques 17, 876–881.

    PubMed  CAS  Google Scholar 

  16. Tsien, R. Y. (1998) The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang, G., Gurtu, V., and Kain, S. R. (1996) An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem. Biophys. Res. Commun. 227, 707–711.

    Article  PubMed  CAS  Google Scholar 

  18. Krieg, P. A. and Melton, D. A. (1987) In vitro RNA synthesis with SP6 RNA polymerase. Method Enzymol. 155, 397–415.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Tapper, A.R., George, A.L. (2003). Heterologous Expression of Ion Channels. In: Potter, N.T. (eds) Neurogenetics. Methods in Molecular Biology™, vol 217. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-330-5:285

Download citation

  • DOI: https://doi.org/10.1385/1-59259-330-5:285

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-990-2

  • Online ISBN: 978-1-59259-330-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics