Skip to main content

Drosophila Models of Polyglutamine Diseases

  • Protocol
Neurogenetics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 217))

Abstract

The fruit fly, Drosophila melanogaster, has been used extensively as an experimental model organism since the beginning of the last century. More recently, the concept of large-scale genetic mutagenesis screens has been applied. In the first such screen, 15 loci spread throughout the genome were identified based on a common phenotype of disruption of embryonic segmentation (1). This seminal work led to identification of orthologous genes that are important in human embryonic development. Mutations in these human genes have also been found to lead to congenital malformations. As one example, Waardenburg’s syndrome is a human autosomal dominant disease that results in deafness and pigmentation defects in the eye, and is caused by mutations in the human homolog of the Drosophila paired gene, PAX-3 (2). Recently, comparative genomic analysis of the completed Drosophila genome has revealed that more than 60% of human disease genes are represented by Drosophila homologs (3,4). This further fosters the use of Drosophila as a model organism to study processes relevant to human disease conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nusslein-Volhard, C. and Wieschaus, E. (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801.

    CAS  Google Scholar 

  2. Tassabehji, M., Read, A. P., Newton, V. E., Harris, R., Balling, R., Gruss, P. and Strachan, T. (1992) Waardenburg’s snydrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636.

    Article  PubMed  CAS  Google Scholar 

  3. Fortini, M. E., Skupski, M. P., Boguski, M. S. and Hariharan, I. K. (2000) A survey of human disease gene counterparts in the Drosophila genome. J. Cell. Biol. 150, F23–F29.

    Article  PubMed  CAS  Google Scholar 

  4. Rubin, G. M., Yandell, M. D., Wortman, J. R., Gabor Miklos, G. L., Nelson, C. R., Hariharan, I. K., et al. (2000) Comparative genomics of the eukaryotes. Science 287, 2204–2215.

    Article  PubMed  CAS  Google Scholar 

  5. Kretzschmar, D., Hasan, G., Sharma, S., Heisenberg, M., and Benzer, S. (1997) The swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila. J. Neurosci. 17, 7425–7432.

    CAS  Google Scholar 

  6. Min, K. T. and Benzer, S. (1997) Spongecake and eggroll: two hereditary diseases in Drosophila resemble patterns of human brain degeneration. Curr. Biol. 7, 885–888.

    Article  PubMed  CAS  Google Scholar 

  7. Lush, M. J., Li, Y., Read, D. J., Willis, A. C., and Glynn, P. (1998) Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem. J. 332, 1–4.

    PubMed  CAS  Google Scholar 

  8. Glynn, P., Holton, J. L., Nolan, C. C., Read, D. J., Brown, L., Hubbard, A., and Cavanagh, J. B. (1998) Neuropathy target esterase: immunolocalization of neuronal cell bodies and axons. Neuroscience 83, 295–302.

    Article  PubMed  CAS  Google Scholar 

  9. La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E., and Fischbeck, K. H. (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79.

    Google Scholar 

  10. Zoghbi, H. Y. and Orr, H. T. (2000) Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247.

    Article  PubMed  CAS  Google Scholar 

  11. Rubin, G. M. and Spradling, A. C. (1982) Genetic transformation of Drosophila with trans-posable element vectors. Science 218, 348–353.

    Article  PubMed  CAS  Google Scholar 

  12. Chen, B., Chu, T., Harms, E., Gergen, J. P., and Strickland, S. (1998) Mapping of Drosophila mutations using site-specific male recombination. Genetics 149, 157–163.

    PubMed  CAS  Google Scholar 

  13. Lukacsovich, T., Asztalos, Z., Awano, W., Baba, K., Kondo, S., Niwa, S. and Yamamoto, D. (2001) Dual-tagging gene trap of novel genes in Drosophila melanogaster. Genetics 157, 727–742.

    CAS  Google Scholar 

  14. Prokopenko, S. N., He, Y., Lu, Y. and Bellen, H. J. (2000) Mutations affecting the development of the peripheral nervous system in Drosophila: a molecular screen for novel proteins. Genetics 156, 1691–1715.

    PubMed  CAS  Google Scholar 

  15. Rong, Y. S. and Golic, K. G. (2000) Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018.

    CAS  Google Scholar 

  16. Rong, Y. S. and Golic, K. G. (2001) A targeted gene knockout in Drosophila. Genetics 157, 1307–1312.

    CAS  Google Scholar 

  17. Lam, G. and Thummel, C. S. (2000) Inducible expression of double-stranded RNA directs specific genetic interference in Drosophila. Curr. Biol. 10, 957–963.

    CAS  Google Scholar 

  18. Hay, B. A., Maile, R., and Rubin, G. M. (1997) P element insertion-dependent gene activation in the Drosophila eye. Proc. Natl. Acad. Sci. USA 94, 5195–5200.

    Article  PubMed  CAS  Google Scholar 

  19. Ellis, M. C., O’Neill, E. M., and Rubin, G. M. (1993) Expression of Drosophila glassprotein and evidence for negative regulation of its activity in non-neuronal cells by another DNA-binding protein. Development 119, 855–865.

    PubMed  CAS  Google Scholar 

  20. Brand, A. H., and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.

    PubMed  CAS  Google Scholar 

  21. Brand, A. H., Manoukian, A. S., and Perrimon, N. (1994) Ectopic expression in Drosophila, in: Drosophila melanogaster: Practical Uses in Cell and Molecular Biology (Goldstein,L.S.B.and Fyrberg,E.A., eds.), Academic Press, San Diego, CA, USA, pp. 635–652.

    Google Scholar 

  22. Freeman, M. (1996) Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87, 651–660.

    Article  PubMed  CAS  Google Scholar 

  23. Bonini, N. M. (2000) Drosophila as a genetic tool to define vertebrate pathway players, in: Developmental Biology Protocols, Vol. II (Tuan,R.S.,and Lo,C.W., eds.), Humana Press, Totowa, NJ, USA, pp. 7–14.

    Chapter  Google Scholar 

  24. Thomas, B. J. and Wassarman, D. A. (1999) A fly’s eye view of biology. Trends Genet. 15, 184–190.

    Article  PubMed  CAS  Google Scholar 

  25. Warrick, J. M., Paulson, H., Gray-Board, G. L., Bui, Q. T., Fischbeck, K., Pittman, R. N. and Bonini, N. M. (1998) Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93, 939–949.

    Article  CAS  Google Scholar 

  26. Jackson, G., Salecker, I., Dong, X., Yao, X., Arnheim, N., Faber, P., MacDonald, M. and Zipursky, S. (1998) Polyglutamine-expanded human Huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21, 633–642.

    Article  PubMed  CAS  Google Scholar 

  27. Fernandez-Funez, P., Nino-Rosales, M. L., B., d. G., She, W., Luchak, J. M., Martinez, P., Turiegano, E., et al. (2000). Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408, 101–106.

    Article  PubMed  CAS  Google Scholar 

  28. Kazemi-Esfarjani, P. and Benzer, S. (2000). Genetic suppression of polyglutamine toxicity in Drosophila. Science 287, 1837–1840.

    CAS  Google Scholar 

  29. Marsh, J. L., Walker, H., Theisen, H., Zhu, Y., Fielder, T., Purcell, J. and Thompson, L. M. (2000) Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum. Mol. Genet. 9, 13–25.

    Article  CAS  Google Scholar 

  30. Rincon-Limas, D. E., Lu, C., Canal, I., Calleja, M., Rodriguez-Esteban, C., Izpisua-Belmonte, J. C. and Botas, J. (1999) Conservation of the expression and function of aperousorthologs in Drosophila and mammals. Proc. Natl. Acad. Sci. USA 96, 2165–2170.

    Article  PubMed  CAS  Google Scholar 

  31. Grieder, N. C., Neelen, D., Burke, R., Basler, K., and Affolter, M. (1995) Schnurri is required for Drosophila Dpp signaling and encodes a zine finger protein similar to the mammalian transcription factor PRDII-BF1. Cell 81, 791–800.

    Article  PubMed  CAS  Google Scholar 

  32. Lin, D. M. and Goodman, C. S. (1994) Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507–523.

    Article  PubMed  CAS  Google Scholar 

  33. Warrick, J. M., Chan, H. Y. E., Gray-Board, G. L., Chai, Y., Paulson, H. L., and Bonini, N. M. (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23, 425–428.

    Article  PubMed  CAS  Google Scholar 

  34. Chan, H. Y. E., Warrick, J. M., Gray-Board, G. L., Paulson, H. L. and Bonini, N. M. (2000) Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy, and modulation of protein solubility in Drosophila. Hum. Mol. Genet. 19, 2811–2820.

    Article  Google Scholar 

  35. Ellerby, L. M., Hackam, A. S., Propp, S. S., Ellerby, H. M., Rabizadeh, S., Cashman, N. R., et al. (1999) Kennedy’s disease: caspase cleavage of the androgen receptor is a crucial event in cytotoxicity. J. Neurochem. 72, 185–195.

    Article  PubMed  CAS  Google Scholar 

  36. Ellerby, L. M., Andrusiak, R. L., Wellington, C. L., Hackam, A. S., Propp, S. S., Wood, J. D., et al. (1999) Cleavage of atrophin-1 at caspase site aspartic acid 109 modulates cytotoxicity. J. Biol. Chem. 274, 8730–8736.

    Article  PubMed  CAS  Google Scholar 

  37. Wellington, C. L., Singaraja, R., Ellerby, L., Savill, J., Roy, S., Leavitt, B., et al. (2000) Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J. Biol. Chem. 275, 19,831–19,838.

    Article  PubMed  CAS  Google Scholar 

  38. Wolff, T. and Ready, D. F. (1993) Pattern formation in the Drosophila retina, in: The Development of Drosophila melanogaster (Bate, M. and Martinez Arias, A. eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, pp. 1277–1326.

    Google Scholar 

  39. Thaker, H. M., and Kankel, D. R. (1992) Mosaic analysis gives an estimate of the extent of genomic involvement in the development of the visual system in Drosophila melanogaster. Genetics 131, 883–894.

    CAS  Google Scholar 

  40. Bergmann, A., Agapite, J., McCall, K. and Steller, H. (1998) The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95, 331–341.

    Article  PubMed  CAS  Google Scholar 

  41. Simon, M. A. (2000) Receptor tyrosine kinases: specific outcomes from general signals. Cell 103, 13–15.

    Article  PubMed  CAS  Google Scholar 

  42. Hafen, E., Basler, K., Edstroem, J. E., and Rubin, G. M. (1987) Sevenless, a cell-specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain. Science 236, 55–63.

    Article  PubMed  CAS  Google Scholar 

  43. Banerjee, U., Renfranz, P. J., Hinton, D. R., Rabin, B. A., and Benzer, S. (1987) The sevenless+protein is expressed apically in cell membranes of developing Drosophila retina; it is not restricted to cell R7. Cell 51, 151–158.

    Article  PubMed  CAS  Google Scholar 

  44. Simon, M. A., Bowtell, D. D., Dodson, G. S., Laverty, T. R., and Rubin, G. M. (1991) Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67, 701–716.

    Article  PubMed  CAS  Google Scholar 

  45. Rogge, R. D., Karlovich, C. A., and Banerjee, U. (1991) Genetic dissection of a neurodevelopmental pathway: Son of sevenless functions downstream of the sevenless and EGF receptor tyrosine kinases. Cell 64, 39–48.

    Article  PubMed  CAS  Google Scholar 

  46. Bukau, B., and Horwich, A. (1998) The Hsp70 and Hsp60 chapeone machines. Cell 92, 351–366.

    Article  PubMed  CAS  Google Scholar 

  47. Goodman, C. S., and Doe, C. D. (1993) Embryonic develoment of the Drosophila central nervous system, in: The development of Drosophila melanogaster (Bate, M. and Martinez Arias, A., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, pp.1131–1206.

    Google Scholar 

  48. Truman, J. W., Taylor,. J., and Awad, T. A. (1993) Formation of the adultnervous system, in: The development of Drosophila melanogaster (Bate, M. and Martinez Arias, A. eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, pp. 1245–1276.

    Google Scholar 

  49. Perez, M. K., Paulson, H. L., Pendse, S. J., Saionz, S. J., Bonini, N. M., and Pittman, R. N. (1998) Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J. Cell. Biol. 143, 1457–1470.

    Article  PubMed  CAS  Google Scholar 

  50. Michalakis, Y., and Veuille, M. (1996) Length variation of CAG/CAA trinucleotide repeats in natural populations of Drosophila melanogaster and its relation to the recombination rate. Genetics 143, 1713–1725.

    PubMed  CAS  Google Scholar 

  51. Karlin, S. and Burge, C. (1996) Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development. Proc. Natl. Acad. Sci. USA 93, 1560–1565.

    Article  PubMed  CAS  Google Scholar 

  52. Li, Z., Karlovich, C. A., Fish, M. P., Scott, M. P., and Myers, R. M. (1999) A putative Drosophila homolog of the Huntington’s disease gene. Hum. Mol. Genet. 8, 1807–1815.

    Article  PubMed  CAS  Google Scholar 

  53. Hoey, T., Dynlacht, B. D., Peterson, M. G., Pugh, B. F., and Tjian, R. (1990) Isolation and characterization of the Drosophila gene encoding the TATA box binding protien, TFIID. Cell 61, 1179–1186.

    Article  PubMed  CAS  Google Scholar 

  54. Reiter, L. T., Potocki, L., Chien, S., Gribskov, M., and Bier, E. (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 11, 1114–1125.

    CAS  Google Scholar 

  55. Ona, V. O., Li, M., Vonsattel, J. P., Andrews, L. J., Khan, S. Q., Chung, W. M., Frey, A. S., et al. (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399, 263–267.

    Article  PubMed  CAS  Google Scholar 

  56. Heiser, V., Scherizinger, E., Boeddrich, A., Nordhoff, E., Lurz, R., Schugardt, N., et al. (2000) Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc. Natl. Acad. Sci. USA 97, 6739–6744.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Edwin Chan, H.Y., Bonini, N.M. (2003). Drosophila Models of Polyglutamine Diseases. In: Potter, N.T. (eds) Neurogenetics. Methods in Molecular Biology™, vol 217. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-330-5:241

Download citation

  • DOI: https://doi.org/10.1385/1-59259-330-5:241

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-990-2

  • Online ISBN: 978-1-59259-330-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics