Skip to main content

Fluorescence In Situ Hybridization (FISH) for Identifying the Genomic Rearrangements Associated with Three Myelinopathies

Charcot-Marie-Tooth Disease, Hereditary Neuropathy with Liability to Pressure Palsies, and Pelizaeus-Merzbacher Disease

  • Protocol
  • 584 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 217))

Abstract

The development of molecular probes by using DNA sequences of differing sizes, complexity, and specificity, coupled with technological innovations such as multicolor fluorochromes, computerized signal amplification, and image analysis, makes fluorescent in situ hybridization (FISH) a powerful investigative tool for use in clinical cytogenetics (13). FISH is rapidly becoming routine in the clinical laboratory repertoire and, in many cases, has replaced high-resolution cytogenetic analyses (for a comprehensive overview of the applications of FISH in the cytogenetics laboratory the reader may refer to Shaffer (1995) (4). Traditionally, routine cytogenetic analysis, with high-resolution banding levels of 650-850 bands per haploid karyotype, was limited to detecting deletions greater than 2-5 Mb in size. In contrast, by utilizing labeled DNA probes that are complementary to a desired gene or chromosomal locus, FISH analysis permits the detection of deletions significantly less than one Mb. In addition, FISH analysis has the distinct advantage of detecting not only cryptic deletions of a chromosomal locus but cryptic translocations (5) and as discussed below, cryptic duplications as well (4).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Escudero, T., Fuster, C., Coll, M. D., and Egozcue, J. (1998) Cytogenetic analysis using simultaneous and sequential fluorescence in situ hybridization. Cancer Genet. Cytogenet. 100, 111–113.

    Article  PubMed  CAS  Google Scholar 

  2. Nath, J. and Johnson, K. L. (1998) Fluorescence in situ hybridization (FISH): DNA probe production and hybridization criteria. Biotech. Histochem. 73, 6–22.

    Article  PubMed  CAS  Google Scholar 

  3. Raimondi, S. C. (2000) Fluorescence in situ hybridization: molecular probes for diagnosis of pediatric neoplastic diseases. Cancer Invest. 18, 135–147.

    Article  PubMed  CAS  Google Scholar 

  4. Shaffer, L. G. (1997) Diagnosis of microdeletion syndromes by fluorescent in situ hybridization (FISH), in Current Protocols in Human Genetics (Dracopoli, N. C., Haines, J. L., Korf, B. R., et al., eds.) Supplement 14, 8.10.1.–8.10.14.

    Google Scholar 

  5. Kuwano, A., Ledbetter, S. A., Dobyns, W. B., Emanuel, B. S., and Ledbetter, D. H. (1991) Detection of deletions and cryptic translocations in Miller-Dieker syndrome by in situ hybridization. Am. J. Hum. Genet. 49, 707–714.

    PubMed  CAS  Google Scholar 

  6. Boggs, B. A. and Chinault, A. C. (1997) Analysis of DNA replication by fluorescence in situ hybridization. Methods 13, 259–270.

    Article  PubMed  CAS  Google Scholar 

  7. Kitsberg, D., Selig, S., Brandeis, M., Simon, I., Keshet, I., Driscoll, D.J., et al. (1993) Allele-specific replication timing of imprinted gene regions. Nature 364, 459–463.

    Article  PubMed  CAS  Google Scholar 

  8. Simon, I., Tenzen, T., Reubinoff, B. E., Hillman, D., McCarrey, J. R., and Cedar, H. (1999) Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature 401, 929–932.

    Article  PubMed  CAS  Google Scholar 

  9. Eden, S. and Cedar, H. (1994) Role of DNA methylation in the regulation of transcription. Curr. Opin. Genet. Dev. 4, 255–259.

    Article  PubMed  CAS  Google Scholar 

  10. Lupski, J. R. (1998) molecular genetics of peripheral neuropathies, in Scientific American Molecular Neurology (Martin, J. B., ed.), Scientific American, Inc., New York, NY, pp. 239–255.

    Google Scholar 

  11. Lupski, J. R. (1997) Charcot-Marie-Tooth disease: a gene-dosage effect. Hospital Practice 32, 83–122.

    PubMed  CAS  Google Scholar 

  12. Charcot, J-M and Marie P. (1886) Sur une forme particulaiere d’atrophie musculaire progressive souvent familiale debutante par les pied et les jambes et atteignant plus tard les mains. Rev. Med. 6, 97–138.

    Google Scholar 

  13. Tooth, H. (1886) The Peroneal Type of Progressive Muscular Atrophy. HK Lewis; London, UK.

    Google Scholar 

  14. Skre, H. (1974) Genetic and clinical aspects of Charcot-Marie-Tooth disease. Clin. Genet. 6, 98–118.

    Article  PubMed  CAS  Google Scholar 

  15. Lupski J. R., Garcia C. A., Parry, G., and Patel, P. I. (1991) Charcot-Marie-Tooth poly-neuropathy syndrome: clinical electrophysiological and genetic aspects, in Current Neurology (Appel, S., ed.), Mosby-Yearbook Co., St. Louis, MO, USA, pp. 1–25.

    Google Scholar 

  16. Dyck, P. J. and Lambert, E. H. (1968) Lower motor and primary sensory neuron diseases with peroneal muscular atrophy, II: neurologic, genetic, and electrophysiologic findings in various neuronal degenerations. Arch. Neurol. 18, 619–625.

    Article  PubMed  CAS  Google Scholar 

  17. Kaku, D. A., Parry, G. J., Malamut, R., Lupski, J. R., and Garcia, C. A. (1993) Nerve conduction studies in Charcot-Marie-Tooth polyneuropathy associated with a segmental duplication of chromosome 17. Neurology 43, 1806–1808.

    PubMed  CAS  Google Scholar 

  18. Lupski J. R. and Garcia, C. A. (1992) Molecular genetics and neuropathology of Charcot-Marie-Tooth disease type 1A. Brain Pathol. 2, 337–349.

    Article  PubMed  CAS  Google Scholar 

  19. Vance J. M., Nicholson, G. A., Yamaoka, L. H., Stajich, J., Stewart, C. S., Speer, M. C., et al. (1989) Linkage of Charcot-Marie-Tooth neuropathy type 1a to chromosome 17. Exp. Neurol. 104, 186–189.

    Article  PubMed  CAS  Google Scholar 

  20. Bird T. D., Ott, J., and Giblett, E. R. (1982) Evidence for linkage of Charcot-Marie-Tooth neuropathy to the Duffy locus on chromosome 1. Am. J. Hum. Genet. 34, 388–394.

    PubMed  CAS  Google Scholar 

  21. Gal, A., Mucke, J., Theile, H., Wieacker, P. F., Ropers, H. H., and Wienker, T.F. (1985) X-linked dominant Charcot-Marie-Tooth disease: suggestion of linkage with a cloned DNA sequence from the proximal Xq. Hum. Genet. 70, 38–42.

    Article  PubMed  CAS  Google Scholar 

  22. Lupski J. R., de Oca-Luna, R. M., Slaugenhaupt, S., Pentao, L., Guzzetta, V., Trask, B. J., et al. (1991) DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 66, 219–232.

    Article  PubMed  CAS  Google Scholar 

  23. De Jong, J. G. Y. (1947) Over Families met hereditaire dispositie tot het optreden van neuritiden gecorreleered met migraine. Psychiatr. Neurol. Bull. 50, 60–76.

    CAS  Google Scholar 

  24. Staal, A., De Weerdt, C J. and Went, L. N. (1965) Hereditary compression syndrome of peripheral nerves. Neurology 15, 1008–1017.

    PubMed  CAS  Google Scholar 

  25. Behse, F., Buchthal, F., Carlsen, F. and Knapplis, G. G. (1972) Hereditary neuropathy with liability to pressure palsies: electrophysiological and histopathological aspects. Brain 95, 777–794.

    Article  PubMed  CAS  Google Scholar 

  26. Pentao, L., Wise, C. A., Chinault, A. C., Patel, P. I. and Lupski, J. R. (1992) Charcot-Marie-Tooth type 1A duplication appears to arise from recombination at repeat sequences flanking the 1.5 Mb monomer unit. Nat. Genet. 2, 292–300.

    Article  PubMed  CAS  Google Scholar 

  27. Inoue, K., Dewar, K., Katsanis, N., Reiter, L.T., Lander, E.S., Devon, K.L., et al. (2001) The 1.4-Mb CMT1A duplication/HNPP deletion genomic region reveals unique genome architectural features and provides insights into the recent evolution of new genes. Genome Res. 11, 1018–1033.

    Article  PubMed  CAS  Google Scholar 

  28. Chance, P.F., Alderson, M.K., Leppig, K.A., Lensch, M.W., Matsunami, N., Smith, B., et al. (1993) DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 72, 143–151.

    Article  PubMed  CAS  Google Scholar 

  29. Reiter, L. T., Murakami, T., Koeuth, T., Gibbs, R. A., Lupski, J. R. (1997) The human COX10 gene is disrupted during homologous recombination between the 24 kb proximal and distal CMT1A-REPs. Hum. Mol. Genet. 6, 1595–1603.

    Article  PubMed  CAS  Google Scholar 

  30. Raeymaekers, P., Timmerman, V., Nelis, E., de-Jonghe, P., Hoogendijk, J.E., Baas, F., et al. (1991) HMSN Collaborative Research Group: Duplication in chromosome 17p11.2 in Charcot-Marie-Tooth neuropathy type 1a (CMT 1a). Neuromusc. Disord. 1, 93–97.

    Article  PubMed  CAS  Google Scholar 

  31. Chance, P. F., Abbas, N., Lensch, M. W., Pentao, L., Roa, B. B., Patel, P. I. and Lupski, J. R. (1994) Two autosomal dominant neuropathies result from reciprocal DNA duplication/ deletion of a region on chromosome 17. Hum. Mol. Genet. 3, 223–228.

    Article  PubMed  CAS  Google Scholar 

  32. Lopes, J., LeGuern, E., Gouider, R., Tardieu, S., Abbas, N., Birouk, N., et al. (1996) Recombination hot spot in a 3.2-kb region of the Charcot-Marie-Tooth type 1A repeat sequences: new tools for molecular diagnosis of hereditary neuropathy with liability to pressure palsies and of Charcot-Marie-Tooth type 1 A. French CMT Collaborative Research Group. Am. J. Hum. Genet. 58, 1223–1230.

    PubMed  CAS  Google Scholar 

  33. Reiter, L. T., Murakami, T., Koeuth, T., Pentao, L., Muzny, D. M., Gibbs, R. A., and Lupski, J.R. (1996) A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element. Nat. Genet. 12, 288–297.

    Article  PubMed  CAS  Google Scholar 

  34. Matsunami, N., Smith, B., Ballard, L., Lensch, M. W., Robertson, M., Albertsen, H., et al. (1992) Peripheral myelin protein-22 gene maps in the duplication in chromosome 17p11.2 associated with Charcot-Marie-Tooth 1A. Nat. Genet. 1, 176–179.

    Article  PubMed  CAS  Google Scholar 

  35. Timmerman, V., Nelis, E., Van, Hul W., Nieuwenhuijsen, B.W., Chen, K.L., Wang, S., et al. (1992) The peripheral myelin protein gene PMP-22 is contained within the Charcot-Marie-Tooth disease type 1A duplication. Nat. Genet. 1, 171–175.

    Article  PubMed  CAS  Google Scholar 

  36. Patel, P. I., Roa, B. B., Welcher, A. A., Schoener-Scott, R., Trask, B J., Pentao, L., et al. (1992) The gene for the peripheral myelin protein PMP-22 is a candidate for Charcot-Marie-Tooth disease type 1A. Nat. Genet. 1, 159–165.

    Article  PubMed  CAS  Google Scholar 

  37. Lupski, J. R. (1998) Charcot-Marie-Tooth disease: lessons in genetic mechanisms. Mol. Med. 4, 3–11.

    PubMed  CAS  Google Scholar 

  38. Shaffer, L. G., Kennedy, G. M., Spikes, A. S., and Lupski, J. R. (1997) Diagnosis of CMT1A and HNPP deletions by interphase FISH: implications for testing in the cytoge-netics laboratory. Am. J. Med. Genet. 69, 325–331.

    Article  PubMed  CAS  Google Scholar 

  39. Garbern, J., Cambi, F., Shy, M., and Kamholz, J. (1999) The molecular pathogenesis of Pelizaeus-Merzbacher disease. Arch. Neurol. 56, 1210–1214.

    Article  PubMed  CAS  Google Scholar 

  40. Pelizaeus, F. (1885) Uber eine eigenthumliche Form spastischer Lahmung mit Cere-bralersheinungen auf hereditarer Grundlage (multiple Sklerose). Arch. Psychiatr. Nervenkr. 16, 698–710.

    Article  Google Scholar 

  41. Merzbacher, L. (1910) Eine eigenartige familiarhereditaire Erkrankungsform (Aplasia axialis extracorticalis congenita). Z. Gesamte. Neurol. Pschiatr. 3, 1–138.

    Article  Google Scholar 

  42. Seitelberger, F. (1995) Neuropathology and genetics of Pelizaeus-Merzbacher disease. Brain Pathol. 5, 267–273.

    Article  PubMed  CAS  Google Scholar 

  43. Boulloche J. and Aicardi, J. (1986) Pelizaeus-Merzbacher disease: Clinical and nosologi-cal study. J. Child Neurol. 1, 233–239.

    Article  PubMed  CAS  Google Scholar 

  44. Kendall, B. E. (1993) Inborn errors and demyelination: MRI and the diagnosis of white matter disease. J. Inherited Metab. Dis. 16, 771–786.

    Article  PubMed  CAS  Google Scholar 

  45. Hodes M., Pratt V., and Dlouhy, S. (1993) Genetics of Pelizaeus-Merzbacher disease. Dev. Neurosci. 15, 383–394.

    Article  PubMed  CAS  Google Scholar 

  46. Sistermans, E. A., ade Coo, R. F., De Wijs, I. J., Van Oost, B. A. (1998) Duplication of the proteolipid protein gene is a major cause of Pelizaeus-Merzbacher disease. Neurology 50, 1749–1754.

    PubMed  CAS  Google Scholar 

  47. Mimault, C., Giraud G., Courtois, V., Cailloux, F., Boire, J. Y., Dastugue, B., and Boespflug-Tanguy, O. (1999) Proteolipoprotein gene analysis in 82 patients with sporadic Pelizaeus-Merzbacher disease: duplications, the major cause of the disease, originate more frequently in male germ cells, but point mutations do not. The clinical European network on brain dysmyelinating disease. Am. J. Hum. Genet. 65, 360–369.

    Article  PubMed  CAS  Google Scholar 

  48. Inoue, K., Osaka, H., Sugiyama, N., Kawanishi, C., Onishi, H, Nezu, A., et al. (1996) A duplicated PLP gene causing Pelizaeus-Merzbacher disease detected by comparative multiplex PCR. Am. J. Hum. Genet. 59, 32–39.

    PubMed  CAS  Google Scholar 

  49. Woodward, K. and Malcolm, S. (1999) Proteolipid protein gene: Pelizaeus-Merzbacher disease in humans and neurodegeneration in mice. TIG 15, 125–128.

    Article  PubMed  CAS  Google Scholar 

  50. Inoue, K., Osaka, H., Imaizumi, K., Nezu, A., Takanashi, J., Arii, J., et al. (1999) Proteolipid protein gene duplications causing Pelizaeus-Merzbacher disease: molecular mechanism and phenotypic manifestations. Ann. Neurol. 45, 624–632.

    Article  PubMed  CAS  Google Scholar 

  51. Woodward, K., Kendall, E., Vetrie, D., and Malcolm, S. (1998) Pelizaeus-Merzbacher disease: identification of Xq22 proteolipid-protein duplications and characterization of breakpoints by interphase FISH. Am. J. Hum. Genet. 63, 207–217.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Mohammed, M.S., Shaffe, L.G. (2003). Fluorescence In Situ Hybridization (FISH) for Identifying the Genomic Rearrangements Associated with Three Myelinopathies. In: Potter, N.T. (eds) Neurogenetics. Methods in Molecular Biology™, vol 217. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-330-5:219

Download citation

  • DOI: https://doi.org/10.1385/1-59259-330-5:219

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-990-2

  • Online ISBN: 978-1-59259-330-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics