Skip to main content

Analysis of Human Mitochondrial DNA Mutations

  • Protocol
Neurogenetics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 217))

Abstract

Mitochondria are the powerhouses of eukaryotic cells. These organelles generate energy in the form of adenosine triphosphate (ATP) from carbohydrates, fats, and proteins, via oxidative phosphorylation. By virtue of possessing their own genetic material—mitochondrial DNA (mtDNA)-mitochondria are unique mammalian organelles. Normal human mtDNA is a 16,569 base-pair (bp), double-stranded, circular molecule (1). The molecules contain tightly compacted genes for 22 transfer (tRNAs), 13 polypeptides, and two ribosomal RNAs (rRNAs) Fig. 1). All 13 polypeptides are subunits of the oxidative phosphorylation system: seven belong to Complex I (NADHCoQ oxidoreductase), one to Complex III (CoQ-cytochrome c oxidoreductase), three to Complex IV (cytochrome c oxidase or COX), and two to Complex V (ATP synthase). These subunits are synthesized within the mitochondrion, where they are assembled together with a larger number of subunits encoded by the nuclear DNA (nDNA), that are synthesized in the cytoplasm and are transported into the mitochondrion (2). Approximately 1,000 mitochondrial polypeptides are encoded in nDNA. Complex II (succinate dehydrogenase-CoQ oxidoreductase), of which succinate dehydrogenase (SDH) is a component, is encoded entirely by nuclear genes; SDH thus serves as a marker for mitochondrial number and activity, independent of the mtDNA.

Map of the human mitochondrial genome. The structural genes for the mtDNAencoded 12S and 16S ribosomal RNAs, the subunits of NADH-coenzyme Q oxidoreductase (ND), cytochrome c oxidase (COX), cytochrome b (Cyt b), and ATP synthase (A), and 22 tRNAs (1-letter amino acid nomenclature), are shown. The origins of light-strand (OL) and heavy-strand (OH) DNA replication, and of the promoters for initiation of transcription from the light-strand (LSP) and heavy-strand (HSP), are shown by arrows. The “common” deletion, a mtDNA species often found in sporadic KSS/PEO is shown, as are common point mutations associated with maternally inherited encephalomyopathies (boxed).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, S., Bankier, A. T., Barrel, B. G., DeBruijin, M., Coulson, A. R., Drouin, J., et al. (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457–465.

    Article  PubMed  CAS  Google Scholar 

  2. Attardi, G. and Schatz, G. (1988) Biogenesis of mitochondria. Annu. Rev. Cell Biol. 4, 289–333.

    Article  PubMed  CAS  Google Scholar 

  3. Giles, R. E., Blanc, H., Cann, R. M., and Wallace, D. C. (1980) Maternal inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA 77, 6715–6719.

    Article  PubMed  CAS  Google Scholar 

  4. Bogenhagen, D. and Clayton, D. A. (1974) The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. J. Biol. Chem. 249, 7991–7995.

    PubMed  CAS  Google Scholar 

  5. Satoh, M. and Kuroiwa, T. (1991) Organization of multiple nucleotides of DNA molecules in mitochondria of a human cell. Exp. Cell Res. 196, 137–140.

    Article  PubMed  CAS  Google Scholar 

  6. Wallace, D. C. (1992) Diseases of the mitochondrial DNA. Annu. Rev. Biochem. 61, 1175–1212.

    Article  PubMed  CAS  Google Scholar 

  7. Goto, Y., Nonaka, I., and Horai, S. (1990) A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348, 651–653.

    Article  PubMed  CAS  Google Scholar 

  8. Goto, Y. I., Nonaka, I., and Horai, S. (1991) A new mtDNA mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Biochem. Biophys. Acta 1097, 238–240.

    PubMed  CAS  Google Scholar 

  9. Morten, K., Cooper, J., Brown, G., Lake, B., Pike, D., and Poulton, J. (1993) A new point mutation associated with mitochondrial encephalomyopathy. Hum. Mol. Genet. 2, 2081–2087.

    Article  PubMed  CAS  Google Scholar 

  10. Goto, Y., Tsugane, K., Tanabe, Y., Nonaka, I., and Horai, S. (1994) A new point mutation at nucleotide pair 3291 of the mitochondrial tRNALeu(UUR) gene in a patient with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochem. Biophys. Res. Comm. 202, 1624–1630.

    Article  PubMed  CAS  Google Scholar 

  11. Manfredi, G., Schon, E. A., Moraes, C. T., Bonilla, E., Berry, G. T., and DiMauro, S. (1995) A new mutation associated with MELAS is located in a mitochondrial DNA polypeptide-coding gene. Neuromusc. Disord. 5, 391–398.

    Article  PubMed  CAS  Google Scholar 

  12. Manfredi, G., Schon, E. A., Bonilla, E., Moraes, C. T., Shanske, S., and DiMauro, S. (1996) Identification of a mutation in the mitochondrial tRNA Cys gene associated with mitochondrial encephalopathy. Hum. Mutat. 7, 158–163.

    Article  PubMed  CAS  Google Scholar 

  13. Nishino, I., Komatsu, M., Kodama, S., Horai, S., Nonaka, I., and Goto, Y.-I. (1996) The 3260 mutation in mitochondrial DNA can cause mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS). Muscle Nerve 19, 1603–1604.

    Article  PubMed  CAS  Google Scholar 

  14. Taylor, R. W., Chinnery, P. F., Haldane, F., Morris, A. A., Bindoff, L. A., Wilson, J., and Turnbull, D. M. (1996) MELAS associated with a mutation in the valine transfer RNA gene of mitochondrial DNA. Ann. Neurol. 40, 459–462.

    Article  PubMed  CAS  Google Scholar 

  15. Santorelli, F. M., Tanji, K., Kulikova, R., Shanske, S., Vilarinho, L., Hays, A. P., and DiMauro, S. (1997) Identification of a novel mutation in the mtDNA ND5 gene associated with MELAS. Biochem. Biophys. Res. Comm. 238, 326–328.

    Article  PubMed  CAS  Google Scholar 

  16. Hanna, M. G., Nelson, I. P., Morgan-Hughes, J. A., and Wood, N. W. (1998) MELAS: a new disease associated mitochondrial DNA mutation and evidence for further genetic heterogeneity. J. Neurol. Neurosurg. Psychiatry. 65, 512–517.

    Article  PubMed  CAS  Google Scholar 

  17. Shoffner, J. M., Lott, M. T., Lezza, A. M. S., Seibel, P., Ballinger, S. W., and Wallace, D. C. (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61, 931–937.

    Article  PubMed  CAS  Google Scholar 

  18. Silvestri, G., Moraes, C. T., Shanske, S., Oh, S. J., and DiMauro, S. (1992) A new mtDNA mutation in the tRNALys gene associated with myoclonic epilepsy and ragged-red fibers (MERRF). Am. J. Hum. Genet. 51, 1213–1217.

    PubMed  CAS  Google Scholar 

  19. Holt, I. J., Harding, A. E., Petty, R. K., and Morgan Hughes, J. A. (1990) A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am. J. Hum. Genet. 46, 428–433.

    PubMed  CAS  Google Scholar 

  20. de Vries, D., van, E. B., Gabreels, F., Ruitenbeek, W., and van Oost, B. (1993) A second missense mutation in the mitochondrial ATPase 6 gene in Leigh’s syndrome. Ann. Neurol. 34, 410–412.

    Article  PubMed  CAS  Google Scholar 

  21. Tatuch, Y., Christodoulou, J., Feigenbaum, A., Clarke, J. T. R., Wherret, J., Smith, C., et al. (1992) Heteroplasmic mtDNA mutation (T->G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am. J. Hum. Genet. 50, 852–858.

    PubMed  CAS  Google Scholar 

  22. Santorelli, F. M., Shanske, S., Sciacco, M., Ciafaloni, E., Bonilla, E., De Vivo, D. C., and DiMauro, S. (1992) A new etiology for Leigh’s syndrome: mitochondrial DNA mutation in the ATPase 6 gene. Ann. Neurol. 32, 467–468.

    Google Scholar 

  23. Brown, W. M., George, M., Jr., and Wilson, A. C. (1979) Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76, 1967–1971.

    Article  PubMed  CAS  Google Scholar 

  24. Zeviani, M., Moraes, C. T., DiMauro, S., Nakase, H., Bonilla, E., Schon, E. A., and Rowland, L. P. (1988) Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology 38, 1339–1346.

    PubMed  CAS  Google Scholar 

  25. Rotig, A., Cormier, V., Blanche, S., Bonnefont, J. P., Ledeist, F., Romero, N., et al. (1990) Pearson’s marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. J. Clin. Invest. 86, 1601–1608.

    Article  PubMed  CAS  Google Scholar 

  26. Zeviani, M., Servidei, S., Gellera, C., Bertini, E., DiMauro, S., and DiDonato, S. (1989) An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 339, 309–311.

    Article  PubMed  CAS  Google Scholar 

  27. Servidei, S., Zeviani, M., Manfredi, G., Ricci, E., Silvestri, G., Bertini, E., et al. (1991) Dominantly inherited mitochondrial myopathy with multiple deletions of mitochondrial DNA: clinical, morphologic, and biochemical studies. Neurology 41, 1053–1059.

    PubMed  CAS  Google Scholar 

  28. Hirano, M., Silvestri, G., Blake, D. M., Lombes, A., Minetti, C., Bonilla, E., et al. (1994) Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical, biochemical, and genetic features of an autosomal recessive mitochondrial disorder. Neurology 44, 721–727.

    PubMed  CAS  Google Scholar 

  29. Suomalainen, A., Majander, A., Wallin, M., Setälä, K., Kontula, K., Leinonen, H., et al. (1997) Autosomal dominant progressive external ophthalmoplegia with mitochondrial deletions of mtDNA: clinical, biochemical, and molecular genetic features of the 10qlinked disease. Neurology 48, 1244–1253.

    PubMed  CAS  Google Scholar 

  30. Moraes, C. T., Shanske, S., Tritschler, H. J., Aprille, J. R., Andreetta, F., Bonilla, E., et al. (1991) MtDNA depletion with variable tissue expression: A novel genetic abnormality in mitochondrial diseases. Am. J. Hum. Genet. 48, 492–501.

    PubMed  CAS  Google Scholar 

  31. Vu, T. H., Sciacco, M., Tanji, K., Nichter, C., Bonilla, E., Chatkupt, S., et al. (1998) Clinical manifestations of mitochondrial depletion. Neurology 50, 1783–1790.

    PubMed  CAS  Google Scholar 

  32. Hirano, M. and Vu, T. H. (2000) Defects of intergenomic communication: where do we stand? Brain Pathol. 10, 451–461.

    Article  PubMed  CAS  Google Scholar 

  33. Santorelli, F., Sciacco, M., Tanji, K., Shanske, S., Vu, T., Golzi, V., et al. (1996) Multiple mitochondrial DNA deletions in sporadic inclusion body myositis. Ann. Neurol. 39, 789–795.

    Article  PubMed  CAS  Google Scholar 

  34. Dalakas, M. C., Illa, I., Pezeshkpour, G. H., Laukaitis, J. P., Cohen, B., and Griffin, J. L. (1990) Mitochondrial myopathy caused by long-term zidovudine therapy. N. Engl. J. Med. 322, 1098–1105.

    Article  PubMed  CAS  Google Scholar 

  35. Arnaudo, E., Dalakas, M., Shanske, S., Moraes, C. T., DiMauro, S., and Schon, E. A. (1991) Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet 337, 508–510.

    Article  PubMed  CAS  Google Scholar 

  36. Lewis, W. and Dalakas, M. C. (1995) Mitochondrial toxicity of antiviral drugs. Nature Med. 1, 417–422.

    Article  PubMed  CAS  Google Scholar 

  37. Poulton, J., Deadman, M. E., and Gardiner, R. M. (1989) Duplications of mitochondrial DNA in mitochondrial myopathy. Lancet 1, 236–240.

    Article  PubMed  CAS  Google Scholar 

  38. Manfredi, G., Vu, T. H., Bonilla, E., Schon, E. A., DiMauro, S., Arnaudo, E., et al. (1997) Association of myopathy with large-scale mitochondrial DNA duplications and deletions: which is pathogenic? Ann. Neurol. 42, 180–188.

    Article  PubMed  CAS  Google Scholar 

  39. Carrozzo, R., Hirano, M., Fromenty, B., Casali, C., Santorelli, F. M., Bonilla, E., et al. (1998) Multiple mtDNA deletions features in autosomal dominant and recessive diseases suggest distinct pathogeneses. Neurology 50, 99–106.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Andreu, A.L., MartÍ, R., Hirano, M. (2003). Analysis of Human Mitochondrial DNA Mutations. In: Potter, N.T. (eds) Neurogenetics. Methods in Molecular Biology™, vol 217. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-330-5:185

Download citation

  • DOI: https://doi.org/10.1385/1-59259-330-5:185

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-990-2

  • Online ISBN: 978-1-59259-330-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics