Neurogenetics pp 165-175 | Cite as

Denaturing Gradient Gel Electrophoresis (DGGE) for Mutation Detection in Duchenne Muscular Dystrophy (DMD)

  • Luciana C. B. Dolinsky
Part of the Methods in Molecular Biology™ book series (MIMB, volume 217)

Abstract

Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder caused by mutations in the dystrophin gene at Xp21. Approximately two-thirds of the mutations are intragenic deletions of one or more of the 79 exons that constitute the 2.4 Mb dystrophin gene, 5 % are duplications, and the remaining 30% are mutations that are very difficult to identify by current diagnostic screening strategies (1, 2, 3). The great majority of deletions can be detected by polymerase chain reaction (PCR) multiplex approach (4,5) or Southern blot analysis probed with dystrophin cDNA (1).

Keywords

Duchenne Muscular Dystrophy Duchenne Muscular Dystrophy Dystrophin Gene Material Safety Data Sheet Material Safety Data Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Koenig, M., Hoffman, E. P., Bertelson, C. J., Monaco, A. P., and Kunkel, L. M. (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509–517.PubMedCrossRefGoogle Scholar
  2. 2.
    Den Dunnen, J. T., Grootscholten, P. M., Bakker, E., Blonden, L. A. J., Ginjaar, H. B., Wapenaar, M.C., et al. (1989) Topography of the Duchenne muscular dystrophy (DMD) gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications. Am. J. Hum. Genet. 45, 835–847.PubMedGoogle Scholar
  3. 3.
    Hu, X., Ray, P. N., Murphy, E. G., Thompson, M.W., and Worton, R. G. (1990) Duplicational mutation at the Duchenne muscular dystrophy locus: its frequency, distribution, origin and phenotype genotype correlation. Am. J. Hum. Genet. 46, 682–695.PubMedGoogle Scholar
  4. 4.
    Chamberlain, J. S., Gibbs, R. A., Ranier, J. E., Nguyen, P. N., and Caskey, C. T. (1988) Deletion screening of the Duchenne muscular dystrophy locus multiplex DNA amplification. Nucleic Acids Res. 16, 11,141–11,156.PubMedCrossRefGoogle Scholar
  5. 5.
    Beggs, A. H., Koenig, M., Boyce, F. M., and Kunkel, L.M. (1990) Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. Hum. Genet. 86, 45–48.PubMedCrossRefGoogle Scholar
  6. 6.
    Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya, T. (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphism. Proc. Natl. Acad. Sci. USA 86, 2766–2770.PubMedCrossRefGoogle Scholar
  7. 7.
    Cotton, R. G. H. (1989) Detection of single base changes in nucleic acids. Biochem. J. 263, 1–10.PubMedGoogle Scholar
  8. 8.
    Soto, D. M. and Sukumar, S. (1992) Improved detection of mutations in the p 53 gene in human tumors as single-strand conformation polymorphisms and double-strand heteroduplex DNA PCR. Methods Appl. 2, 96–98.Google Scholar
  9. 9.
    White, M. B., Carvalho, M., Derse, D., O’Brien, S. J., and Dean, M. (1992) Detecting single base substitutions as heteroduplex polymorphisms. Genomics 12, 301–306.PubMedCrossRefGoogle Scholar
  10. 10.
    Mendell, J. R., Buzin, C. H., Feng, J., Yan, J., Serrano, C., Sangani, D. S., et al. (2001). Diagnosis of Duchenne dystrophy by enhanced detection of small mutations. Neurology 57, 645–650.PubMedGoogle Scholar
  11. 11.
    Fischer, S. G. and Lerman, L. S. (1979). Lenght-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell 16, 191–200.PubMedCrossRefGoogle Scholar
  12. 12.
    Fischer, S.G. and Lerman, L.S. (1983). DNA fragments differing by a single base-pair substitution are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80, 1579–1583.PubMedCrossRefGoogle Scholar
  13. 13.
    Myers, R. M., Fischer, S. G., Lerman, L. S. and Maniatis, T. (1985). Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13, 3131–3145.PubMedCrossRefGoogle Scholar
  14. 14.
    Myers, R. M., Maniatis, T., and Lerman, L.S. (1987). Detection and localization of single base changes by denaturing gradient gel electrophoresis, in Methods in Enzymology, vol. 155. (Wu, R., ed.), Academic Press, New York; pp. 501–527.Google Scholar
  15. 15.
    Lerman, L. S. and Silverstain, K. (1987). Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis, in Methods in Enzymology, vol. 155. (Wu, R., ed.), Academic Press, New York; pp. 482–501.Google Scholar
  16. 16.
    Hofstra, R. W. M. and den Dunnen, J. T. Personal communication. (see Website http:// www.dmd.nl/dgge.html)
  17. 17.
    Dolinsky, L. C. B., Moura-Neto, R. S., and Falcão-Conceição, D. N. (2000) DGGE scan as a tool to look for new mutants and carriers of the DMD gene. Am. J. Hum. Genet. 67 (Suppl), 4.Google Scholar
  18. 18.
    Miller, S. A., Dykes, D. D., and Polesky, H. F. (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Luciana C. B. Dolinsky
    • 1
  1. 1.Departamento de Genética, onInstituo de BiologiaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations