Skip to main content

Novel Approaches to Screen for Anticancer Drugs Using Saccharomyces cerevisiae

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 223))

  • 874 Accesses

Abstract

The development of anticancer drugs has relied primarily on two traditional approaches. Synthetic or natural compounds are routinely screened for anticancer activities using a cell-based assay. The National Cancer Institute (NCI) has relied on a panel of human tumor cell lines to search for compounds that inhibit cell growth (1,2). Inhibitors identified in this screen are then further characterized for toxicity and antitumor activity in animal models. A strategy that is highly popular in industry is high-throughput screens for compounds that inhibit the in-vitro activities of specific enzymes or proteins (kinases, phosphatases, etc.) (3). This approach relies on the establishment of a robust in-vitro assay for the protein of interest. Although kinases are the preferred substrates because many of the existing chemical libraries were designed to identify kinase inhibitors, screens for other cellular targets are limited only by the development of an appropriate assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alley, M. C., Scudiero, D. A., Monks, A., et al. (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetraolium assay. Cancer Res. 48, 589–601.

    PubMed  CAS  Google Scholar 

  2. Paull, K. D., Shoemaker, R. H., Hodes, L., et al. (1989) Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J. Natl. Cancer Inst. 81, 1088–1092.

    Article  PubMed  CAS  Google Scholar 

  3. Panek, R. L., Lu, G. H., Klutchko, S. R., et al. (1997) In vitro pharmacological characterization of PD 166285, a new nanomolar potent and broadly active protein tyrosine kinase inhibitor. J. Pharmacol. Exp. Ther. 283, 1433–1444.

    PubMed  CAS  Google Scholar 

  4. Mayer, T. U., Kapoor, T. M., Haggarty, S. J., et al. (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science (1999) 286, 971–974.

    Article  PubMed  CAS  Google Scholar 

  5. Blangy, A., Lane, H. A., D’Herin, P. D., Harper, M., Kress, M., and Nigg, E. A. (1995) Phos-phorylation by p34cdc2 regulates spindle association of human eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159–1169.

    Article  PubMed  CAS  Google Scholar 

  6. Sawin, K. E., Leguellec, K., Philippe, M., and Mitchison, T. J. (1992) Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359, 480–481.

    Article  Google Scholar 

  7. White, R. J. (1982) Microbiological models as screening tools for anticancer agents: potentials and limitations. Ann. Rev. Microbiol. 36, 415–433.

    Article  CAS  Google Scholar 

  8. Renan, M. J. (1993) How many mutations are required for tumorigenesis? Implications from human cancer data. Mol. Carcinog. 7, 139–146.

    Article  PubMed  CAS  Google Scholar 

  9. Hartwell, L. H., Szankasi, P., Roberts, C. J., Murray, A. W., and Friend, S. H. (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068.

    Article  PubMed  CAS  Google Scholar 

  10. Guthrie, C. and Fink, G. R. (1991) Guide to yeast genetics and molecular biology, in Methods in Enzymology (Abelson, J. N. and Simon, M. I., eds.). Academic Press, New York, Vol. 194.

    Google Scholar 

  11. Simon, J. A., Szankasi, P., Nguyen, D. K., et al. (2000) Differential toxicities of anticancer agents among DNA repair and checkpoint mutants of Saccharomyces cerevisiae. Cancer Res. 60, 328–333.

    PubMed  CAS  Google Scholar 

  12. Goffeau, A., Barrell, B. G., Bussey, H., et al. (1996) Life with 6000 genes. Science 274, 5463–5467.

    Article  Google Scholar 

  13. McCammon, M. T., Hartmann, M. A., Bottema, C. D., and Parks, L.W. (1984) Sterol methylation in Saccharomyces cerevisiae. J. Bacteriol. 157, 475–483.

    PubMed  CAS  Google Scholar 

  14. Gaber, R. F., Copple, D. M., Kennedy, B. K., Vidal, M., and Bard, M. (1989) The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol. Cell. Biol. 9, 3447–3456.

    PubMed  CAS  Google Scholar 

  15. Balzi, E. and Goffeau, A. (1995) Yeast multidrug resistance: the PDR network. J. Bioenerg. Biomembr. 27, 71–76.

    Article  PubMed  CAS  Google Scholar 

  16. Kolaczkowski, M., Van der Rest, M., Cybularz-Kolaczkowska, A., Soumillion, J. P., Konings, W. N., and Goffeau, A. (1996) Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p. J. Biol. Chem. 271, 31543–31548.

    Article  PubMed  CAS  Google Scholar 

  17. Friedberg, E. C., Walker, G. C., and Siede, W. (1995) DNA Repair and Mutagenesis. American Society for Microbiology, Washington, DC.

    Google Scholar 

  18. Weinert, T. A. and Hartwell, L. H. (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241, 317–322.

    Article  PubMed  CAS  Google Scholar 

  19. Weinert, T. A., Kiser, G. L., and Hartwell, L. H. (1994) Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8, 652–665.

    Article  PubMed  CAS  Google Scholar 

  20. Straight, A. F. and Murray, A. W. (1997) The spindle assembly checkpoint in budding yeast. Meth. Enzymol. 283, 425–440.

    Article  PubMed  CAS  Google Scholar 

  21. Watt, P. M., Hickson, I. D., Borts, R. H., and Louis, E. J. (1996) SGS1, a homologue of the Bloom’s and Werner’s syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144, 935–945.

    PubMed  CAS  Google Scholar 

  22. Prakash, L. (1981) Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3, and rad52 mutations Mol. Gen. Genet. 184, 471–478.

    Article  PubMed  CAS  Google Scholar 

  23. Prakash, S., Sung, P., and Prakash, L. (1993) DNA repair genes and proteins of Saccharomyces cerevisiae. Annu. Rev. Genet. 27, 33–70.

    Article  PubMed  CAS  Google Scholar 

  24. McIntosh, E. M., Kunz, B. A., and Haynes, R. H. (1986) Inhibition of DNA replication in Saccharomyces cerevisiae by araCMP. Curr. Genet. 10, 579–585.

    Article  PubMed  CAS  Google Scholar 

  25. Yamagata, K., Kato, J., Shimamoto, A., Goto, M., Furuichi, Y., and Ikeda, H. (1998) Bloom’s and Werner’s syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc. Natl. Acad. Sci. USA 95, 8733–8738.

    Article  PubMed  CAS  Google Scholar 

  26. Xiao, W., Derfler, B., Chen, J., and Samson, L. (1991) Primary sequence and biological functions of a Saccharomyces cerevisiae O6 methylguanine/O4 methylthymine DNA repair methyltransferase gene. EMBO J. 10, 2179–2186.

    PubMed  CAS  Google Scholar 

  27. Kokkinakis, D. M., Ahmed, M. M., Delgado, R., Fruitwala, M. M., Mohiuddin, M., and Albores-Saavedra, J. (1997) Role of O6-methylguanine-DNA methyltransferase in the resistance of pancreatic tumors to DNA alkylating agents. Cancer Res. 57, 5360–5368.

    PubMed  CAS  Google Scholar 

  28. Sherr, C. J. (1996) Cancer cell cycles. Science 274, 1672–1677.

    Article  PubMed  CAS  Google Scholar 

  29. Sherr, C. J. (2000) The Pezcoller Lecture: cancer cell cycles revisited. Cancer Res. 60, 3689–3695.

    PubMed  CAS  Google Scholar 

  30. Moorthamer, M., Panchal, M., Greenhalf, W., and Chaudhuri, B. (1998) The p16(INK4A) protein and flavopiridol restore yeast cell growth inhibited by Cdk4. Biochem. Biophys. Res. Commun. 250, 791–797.

    Article  PubMed  CAS  Google Scholar 

  31. Lorch, Y. and Kornberg, R. D. (1985) A region flanking the GAL7 gene and a binding site for GAL4 protein as upstream activating sequences in yeast. J. Mol. Biol. 186, 821–824.

    Article  PubMed  CAS  Google Scholar 

  32. Johnston, M. (1987) A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol. Rev. 51, 458–476.

    PubMed  CAS  Google Scholar 

  33. Nasmyth, K. A. and Reed, S. I. (1980) Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Proc. Natl. Acad. Sci. USA 77, 2119–2123.

    Article  PubMed  CAS  Google Scholar 

  34. Timblin, B. K., Tatchell, K., and Bergman, L. W. (1996) Deletion of the gene encoding the cyclin-dependent protein kinase Pho85 alters glycogen metabolism in Saccharomyces cerevisiae. Genetics 143, 57–66.

    PubMed  CAS  Google Scholar 

  35. Balciunas, D. and Ronne, H. (1995) Three subunits of the RNA polymerase II mediator complex are involved in glucose repression. Nucleic Acids Res. 23, 4421–4425.

    Article  PubMed  CAS  Google Scholar 

  36. Lee, J. M. and Greenleaf, A. L. (1991) CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae. Gene Exp. 1, 149–167.

    CAS  Google Scholar 

  37. Valay, J. G., Simon, M., and Faye, G. (1993) The kin28 protein kinase is associated with a cyclin in Saccharomyces cerevisiae. J. Mol. Biol. 234, 307–310.

    Article  PubMed  CAS  Google Scholar 

  38. Tao, W., Kurschner, C., and Morgan, J. I. (1998) Bcl-xs and Bad potentiate the death suppressing activities of Bcl-xl, Bcl-2, and A1 in yeast. J. Biol. Chem. 273, 23704–23708.

    Article  PubMed  CAS  Google Scholar 

  39. Xu, Q., Jurgensmeier, J. M., and Reed, J. C. (1999) Methods of assaying Bcl-2 and Bax family proteins in yeast. Methods 17, 292–304.

    Article  PubMed  CAS  Google Scholar 

  40. Decaudin, D., Geley, S., Hirsch, T., et al. (1997) Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res. 57, 62–67.

    PubMed  CAS  Google Scholar 

  41. Li, X. and Chang, Y. G. (1995) Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. Proc. Natl. Acad. Sci. USA 92, 12357–12361.

    Article  PubMed  CAS  Google Scholar 

  42. Hoyt, M. A., He, L., Totis, L., and Saunders, W. S. (1993) Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics 135, 35–44.

    PubMed  CAS  Google Scholar 

  43. Straight, A. F. and Murray, A. W. (1997) The spindle assembly checkpoint in budding yeast. Meth. Enzymol. 283, 425–440.

    Article  PubMed  CAS  Google Scholar 

  44. Hoyt, M. A., Totis, L., and Roberts, B. T. (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517.

    Article  PubMed  CAS  Google Scholar 

  45. Hardwick, K. G., Li, R., Mistrot, C., et al. (1999) Lesions in many different spindle components activate the spindle checkpoint in the budding yeast Saccharomyces cerevisiae. Genetics 152, 509–518.

    PubMed  CAS  Google Scholar 

  46. Cahill, D. P., Lengauer, C., Yu, J., et al. (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303.

    Article  PubMed  CAS  Google Scholar 

  47. Hoyt, M. A. and Geiser, J. R. (1996) Genetic analysis of the mitotic spindle. Annu. Rev. Genet. 30, 7–33.

    Article  PubMed  CAS  Google Scholar 

  48. Parsons, R., Li, G. M., Longley, M. J., et al. (1993) Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75, 1227–1236.

    Article  PubMed  CAS  Google Scholar 

  49. Fujiwara, T., Stolker, J. M., Watanabe, T., et al. (1998) Accumulated clonal genetic alterations in familial and sporadic colorectal carcinomas with widespread instability in microsatellite sequences. Am. J. Pathol. 153, 1063–1078.

    Article  PubMed  CAS  Google Scholar 

  50. Elledge, S. J. and Davis, R. W. (1990) Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes Dev. 4, 740–751.

    Article  PubMed  CAS  Google Scholar 

  51. Price, C., Nasmyth, K., and Schuster, T. (1991) A general approach to the isolation of cell cycleregulated genes in the budding yeast, Saccharomyces cerevisiae. J. Mol. Biol. 218, 543–556.

    Article  PubMed  CAS  Google Scholar 

  52. Delsal, G., Loda, M., and Pagano, M. (1996) Cell cycle and cancer: critical events at the G1 restriction point. Crit. Rev. Oncogen. 7, 127–142.

    CAS  Google Scholar 

  53. Funk, J. O. (1999) Cancer cell cycle control. Anticancer Res. 19, 4772–4780.

    PubMed  CAS  Google Scholar 

  54. Richardson, H. E., Wittenberg, C., Cross, F., and Reed, S. I. (1989) An essential G1 function for cyclin-like proteins in yeast. Cell 59, 1127–1133.

    Article  PubMed  CAS  Google Scholar 

  55. Reed, S. I., Dulic, V., Lew, D. J., Richardson, H. E., and Wittenberg, C. (1992) G1 control in yeast and animal cells. Ciba Found. Symp. 170, 7–15; discussion 15–19.

    PubMed  CAS  Google Scholar 

  56. Visintin, R., Craig, K., Hwang, E. S., Prinz, S., Tyers, M., and Amona, A. (1998) The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2, 709–718.

    Article  PubMed  CAS  Google Scholar 

  57. Marelli, M., Aitchison, J. D., and Wozniak, R. W. (1998) Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. J. Cell Biol. 143, 1813–1830.

    Article  PubMed  CAS  Google Scholar 

  58. Rine, J., Hansen, W., Hardeman, E., and Davis, R. W. (1983) Targeted selection of recombinant clones through gene dosage effects. Proc. Natl. Acad. Sci. USA 80, 6750–6754.

    Article  PubMed  CAS  Google Scholar 

  59. Barnes, G., Hansen, W. J., Holcomb, C. L., and Rine, J. (1984) Asparagine-linked glycosylation in Saccharomyces cerevisiae: genetic analysis of an early step. Mol. Cell. Biol. 4, 2381–2388.

    PubMed  CAS  Google Scholar 

  60. Ishida, R., Hamatake, M., Wasserman, R. A., Nitiss, J. L., Wang, J. C., and Andoh, T. (1995) DNA topoisomerase II is the molecular target of bisdioxopiperazine derivatives ICRF-159 and ICRF-193 in Saccharomyces cerevisiae. Cancer Res. 55, 2299–2303.

    PubMed  CAS  Google Scholar 

  61. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.

    Article  PubMed  CAS  Google Scholar 

  62. Giaever, G., Shoemaker, D. D., Jones, T. W., et al. (1999) Genomic Profiling of drug sensitivities via induced haploinsufficiency. Nat. Genet. 21, 278–283.

    Article  PubMed  CAS  Google Scholar 

  63. Licitra, E. J. and Liu, J. O. (1996) A three-hybrid system for detecting small ligand-protein receptor interactions. Proc. Natl. Acad. Sci. USA 93, 12817–12821.

    Article  PubMed  CAS  Google Scholar 

  64. Griffith, E. C., Su, Z., Turk, B. E., et al. (1997) Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem. Biol. 4, 461–471.

    Article  PubMed  CAS  Google Scholar 

  65. Sin, N., Meng, L., Wang, M. Q., Wen, J. J., Bornmann, W. G., and Crews, C. M. (1997) The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, metap-2. Proc. Natl. Acad. Sci. USA 94, 6099–6103.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Simon, J.A., Yen, T.J. (2003). Novel Approaches to Screen for Anticancer Drugs Using Saccharomyces cerevisiae . In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 223. Humana Press. https://doi.org/10.1385/1-59259-329-1:555

Download citation

  • DOI: https://doi.org/10.1385/1-59259-329-1:555

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-987-2

  • Online ISBN: 978-1-59259-329-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics