Skip to main content

Regulation of NF-κB by Oncoproteins and Tumor Suppressor Proteins

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 223))

Abstract

The transcription factor nuclear factor-κB (NF-κB) has been demonstrated to control cellular proliferation and oncogenesis. Consistent with this, NF-κB activity is stimulated by various mitogenic stimuli and by the action of numerous oncoproteins. This role of NF-κB in controlling oncogenesis is highlighted by observations that many oncoprotein signaling networks lead to the activation of NF-κB and that NF-κB is required for onco-gene-induced cellular transformation (1). Furthermore, it has also been demonstrated that various tumor suppressor gene products can function to negatively regulate NF-κB activity. However, evidence has been provided that NF-κB activity is required for the ability of p53 to induce cell death and that NF-κB can regulate p53 gene expression. This review highlights the complex roles that NF-κB subunits play in cellular transformation and analyzes mechanisms of oncoprotein-induced activation and tumor suppressor gene regulation of NF-κB. What is clear is that the role of NF-κB in regulating oncogenic mechanisms is complex, due to stimulus-specific, cell type-specific, or subunit-specific responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldwin, A. S. (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J. Clin. Inv. 107, 241–246.

    Article  CAS  Google Scholar 

  2. Baldwin, A. S. (1996) The NF-kappa B and I-kappa B proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–681.

    Article  PubMed  CAS  Google Scholar 

  3. Ghosh, S., May, M. J., and Kopp, E. B. (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260.

    Article  PubMed  CAS  Google Scholar 

  4. DiDonato, J., Mercurio, F., Rosette, C., et al. (1996) Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16, 1295–1304.

    PubMed  CAS  Google Scholar 

  5. Mercurio, F., Zhu, H., Murray, B. W., et al. (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278, 860–866.

    Article  PubMed  CAS  Google Scholar 

  6. Zandi, E., Rothwarf, D. M., Delhase, M., Hayakawa, M., and Karin, M. (1997) The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91, 243–252.

    Article  PubMed  CAS  Google Scholar 

  7. Zandi, E. and Karin, M. (1999) Bridging the gap: composition, regulation, and physiological function of the IkappaB kinase complex. Mol. Cell. Biol. 19, 4547–4551.

    PubMed  CAS  Google Scholar 

  8. Wang, D. and Baldwin, A. S., Jr. (1998) Activation of nuclear factor-kappaB-dependent transcription by tumor necrosis factor-alpha is mediated through phosphorylation of RelA/p65 on serine 529. J. Biol. Chem. 273, 29411–29416.

    Article  PubMed  CAS  Google Scholar 

  9. Sizemore, N., Leung, S., and Stark, G. R. (1999) Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol. Cell. Biol. 19, 4798–4805.

    PubMed  CAS  Google Scholar 

  10. Finco, T. S., Westwick, J. K., Norris, J. L., Beg, A. A., Der, C. J., and Baldwin, A. S., Jr. (1997) Oncogenic Ha-Ras-induced signaling activates NF-kappaB transcriptional activity, which is required for cellular transformation. J. Biol. Chem. 272, 24113–24116.

    Article  PubMed  CAS  Google Scholar 

  11. Norris, J. L. and Baldwin, A. S., Jr. (1999) Oncogenic ras enhances NF-kappaB transcriptional activity through raf-dependent and raf-independent mitogen-activated protein kinase signaling pathways. J. Biol. Chem. 274, 13841–13846.

    Article  PubMed  CAS  Google Scholar 

  12. Arsura, M., Mercurio, F., Oliver, A., Thorgeirsson, S., and Sonenshein, G. (2000) Role of the Ikappa B complex in oncogenic Ras-and Raf-mediated transformation of rat liver epithelial cells. Mol. Cell. Biol. 20, 5381–5391.

    Article  PubMed  CAS  Google Scholar 

  13. Madrid, L. V., Wang, C. Y., Guttridge, D. C., Schottelius, A. J., Baldwin, A. S., Jr., and Mayo, M. W. (2000) Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol. Cell. Biol. 20, 1626–1638.

    Article  PubMed  CAS  Google Scholar 

  14. Kane, L. P., Shapiro, V. S., Stokoe, D., and Weiss, A. (1999) Induction of NF-kappaB by the Akt/PKB kinase. Curr. Biol. 9, 601–604.

    Article  PubMed  CAS  Google Scholar 

  15. Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M., and Donner, D. B. (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401, 82–85.

    Article  PubMed  CAS  Google Scholar 

  16. Romashkova, J. A. and Makarov, S. S. (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401, 86–90.

    Article  PubMed  CAS  Google Scholar 

  17. Madrid, L., Mayo, M., Reuther, J., and Baldwin, A. (2001) Akt stimulates the transactivation potential of the RelA/p65 subunit of NF-kB through utilization of the IκB kinase and activation of the mitogen-activated protein kinase p38. J. Biol. Chem. 276,18934–18940.

    Article  PubMed  CAS  Google Scholar 

  18. Bargou, R., Emmerich, F., Krappmann, D., et al. (1997) Constitutive activation of NF-κB-RelA is required for proliferation and survival of Hodgkin’s disease tumor cells. J. Clin. Invest. 100, 2961–2969.

    Article  PubMed  CAS  Google Scholar 

  19. Yamamoto, Y. and Gaynor, R. B. (2001) Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J. Clin. Invest. 107, 135–142.

    Article  PubMed  CAS  Google Scholar 

  20. Mayo, M. W., Wang, C. Y., Cogswell, P. C., et al. (1997) Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278, 1812–1815.

    Article  PubMed  CAS  Google Scholar 

  21. Guttridge, D. C., Albanese, C., Reuther, J. Y., Pestell, R. G., and Baldwin, A. S., Jr. (1999) NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell. Biol. 19, 5785–5799.

    PubMed  CAS  Google Scholar 

  22. Hinz, M., Krappmann, D., Eichten, A., Heder, A., Scheidereit, C., and Strauss, M. (1999) NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol. Cell. Biol. 19, 2690–2698.

    PubMed  CAS  Google Scholar 

  23. Huang, S., DeGuzman, A., Bucana, C., and Fidler, I. (2000) NF-κB activity correlates with growth, angiogenesis, and metastasis of human melanoma cells in nude mice. Clin. Cancer Res. 6, 2573–2581.

    PubMed  CAS  Google Scholar 

  24. Ravi, R., Mookerjee, B., van Hensbergen, Y., et al. (1998) p53-mediated repression of nuclear factor-kappaB RelA via the transcriptional integrator p300. Cancer Res. 58, 4531–4536.

    PubMed  CAS  Google Scholar 

  25. Webster, G. A. and Perkins, N. D. (1999) Transcriptional cross talk between NF-kappaB and p53. Mol. Cell. Biol. 19, 3485–3495.

    PubMed  CAS  Google Scholar 

  26. Shao, J., Fujiwara, T., Kadowaki, Y., et al. (2000) Overexpression of wild-type p53 inhibits NF-κB activity and synergizes with aspirin to induce apoptosis in human colon cancer cells. Oncogene 10, 726–736.

    Article  Google Scholar 

  27. Bartke, T., Siegmund, D., Peters, N., et al. (2001) p53 upregulates cFLIP, inhibits transcription of NF-κB-regulated genes and induces caspase-8-independent cell death in DLD-1 cells. Oncogene 20, 571–580.

    Article  PubMed  CAS  Google Scholar 

  28. Nees, M., Geoghegan, J., Hyman, T., Frank, S., Miller, L., and Woodworth, C. (2001) Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-κB-responsive genes in cervical keratinocytes. J. Virol. 75, 4283–4296.

    Article  PubMed  CAS  Google Scholar 

  29. Holmes-McNary, A., Baldwin, A., and Zeisel, S. (2001) Opposing regulation of choline deficiency-induced apoptosis by p53 and NF-κB. J. Biol. Chem. 276, 41197–41204.

    Article  PubMed  CAS  Google Scholar 

  30. Sherr, C. J. and Roberts, J. M. (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512.

    Article  PubMed  CAS  Google Scholar 

  31. Pan, H., Yin, C., Dyson, N. J., Harlow, E., Yamasaki, L., and Van Dyke, T. (1998) Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within developing tumors. Mol. Cell 2, 283–292.

    Article  PubMed  CAS  Google Scholar 

  32. Tsai, K. Y., Hu, Y., Macleod, K. F., Crowley, D., Yamasaki, L., and Jacks, T. (1998) Mutation of E2F-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304.

    Article  PubMed  CAS  Google Scholar 

  33. Phillips, A. C., Ernst, M. K., Bates, S., Rice, N. R., and Vousden, K. H. (1999) E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol. Cell 4, 771–781.

    Article  PubMed  CAS  Google Scholar 

  34. Tanaka, H., Matsumura, I., Ezoe, E., et al. (2002) E2F1 and c-Myc potentiate apoptosis through inhibition of NF-κB activity that facilitates MnSOD-mediated ROS elimination. Mol. Cell 9, 1017–1029.

    Article  PubMed  CAS  Google Scholar 

  35. Wolff, B. and Naumann, M. (1999) INK4 cell cycle inhibitors direct transcriptional inactivation of NF-kappaB. Oncogene 18, 2663–2666.

    Article  PubMed  CAS  Google Scholar 

  36. Li, J., C., Yen, C., Liaw, D., et al. (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947.

    Article  PubMed  CAS  Google Scholar 

  37. Di Cristofano, A., Pesce, B., Cordon-Cardo, C., and Pandolfi, P. P. (1998) PTEN is essential for embryonic development and tumour suppression. Nat. Genet. 19, 348–355.

    Article  PubMed  Google Scholar 

  38. Whang, Y. E., Wu, X., Suzuki, H., et al. (1998) Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc. Natl. Acad. Sci. USA 95, 5246–5250.

    Article  PubMed  CAS  Google Scholar 

  39. Stambolic, V., Suzuki, A., de la Pompa, J. L., et al. (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39.

    Article  PubMed  CAS  Google Scholar 

  40. Koul, D., Yao, Y., Abbruzzese, J., Yung, W., and Reddy, S. (2001) Tumor suppressor MMAC/PTEN inhibits cytokine-induced NF-κB activation without interfering with the IkappaB degradation pathway. J. Biol. Chem. 276, 11402–11408.

    Article  PubMed  CAS  Google Scholar 

  41. Mayo, M., Madrid, L., Westerheide, S., et al. (2002) PTEN blocks TNF-induced NF-kB-dependent transcription by inhibiting the transactivation potential of the p65 subunit. J. Biol. Chem. 277,11116–11125.

    Article  PubMed  CAS  Google Scholar 

  42. Seitz, C. S., Lin, Q., Deng, H., and Khavari, P. A. (1998) Alterations in NF-kappaB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-kappaB. Proc. Natl. Acad. Sci. USA 95(5), 2307–2312.

    Article  PubMed  CAS  Google Scholar 

  43. van Hogerlinden, M., Rozell, B., Ahrlund-Richter, L., and Toftgard, R. (1999) Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/NF-κB signaling. Cancer Res. 59, 3299–3303.

    PubMed  Google Scholar 

  44. Dumont, A., Hehner, S. P., Hofmann, T. G., Ueffing, M., Droge, W., and Schmitz, M. L. (1999) Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene (18)3, 747–757.

    Article  PubMed  CAS  Google Scholar 

  45. Bash, J., Zong, W. X., and Gelinas, C. (1997) c-Rel arrests the proliferation of HeLa cells and affects critical regulators of the G1/S-phase transition. Mol. Cell. Biol. 17, 6526–6536.

    PubMed  CAS  Google Scholar 

  46. Ryan, K. M., Ernst, M. K., Rice, N. R., and Vousden, K. H. (2000) Role of NF-kappaB in p53-mediated programmed cell death. Nature 404, 892–897.

    Article  PubMed  CAS  Google Scholar 

  47. Benoit, V., Hellin, A. C., Huygen, S., Gielen, J., Bours, V., and Merville, M. P. (2000) Additive effect between NF-kappaB subunits and p53 protein for transcriptional activation of human p53 promoter. Oncogene 19(41), 4787–4794.

    Article  PubMed  CAS  Google Scholar 

  48. Perkins, N. D. (2000) The Rel/NF-kappa B family, friend and foe. Trends Biochem. Sci. 25, 434–440.

    Article  PubMed  CAS  Google Scholar 

  49. Delhase, M., Li, N., and Karin, M. (2000) Kinase regulation in inflammatory response. Nature 406, 367–368.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Madrid, L.V., Baldwin, A.S. (2003). Regulation of NF-κB by Oncoproteins and Tumor Suppressor Proteins. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 223. Humana Press. https://doi.org/10.1385/1-59259-329-1:523

Download citation

  • DOI: https://doi.org/10.1385/1-59259-329-1:523

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-987-2

  • Online ISBN: 978-1-59259-329-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics