Skip to main content

Targets in Apoptosis Signaling

Promise of Selective Anticancer Therapy

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 223))

Abstract

The human body is composed of approximately 1014 cells, each of which is capable of committing suicide by apoptosis. Normally, the processes of cell division and cell death are tightly coupled, so that no net increase in cell numbers occurs. However, alterations in the expression or function of the genes that control cell division and cell death can upset this delicate balance, contributing to expansion of neoplastic cells causing cancers. While the existing, conventional anticancer drugs either cause cell cycle perturbation or DNA damage, they do not interact directly with the intracellular machinery for apoptosis. Tumor selectivity of such agents is due largely to the increased sensitivity to apoptosis of tumor cells following DNA damage or cell cycle perturbation. The study of the molecular basis of cancer has generated the promise of identifying new targets for more selective and molecularly focused anticancer therapies. This chapter describes several novel therapeutic agents or strategies that target critical regulators or effectors of apoptosis. These agents or strategies have the potential to exert selective cytotoxicity against cancer cells and are currently under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salvesen, G. S. and Dixit, V. M. (1997) Caspases: intracellular signaling by proteolysis. Cell 91(4), 443–446.

    Article  PubMed  CAS  Google Scholar 

  2. Salvesen, G. S. and Dixit, V. M. (1999) Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA 96(20), 10964–10967.

    Article  PubMed  CAS  Google Scholar 

  3. Ashkenazi, A. and Dixit, V. (1998) Death receptors: signaling and modulation. Science 281, 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  4. Kischkel, F. C., Hellbardt, S., Behrmann, I., et al. (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14(22), 5579–5588.

    PubMed  CAS  Google Scholar 

  5. Boldin, M. P., Varfolomeev, E. E., Pancer, Z., Mett, I. L., Camonis, J. H., and Wallach, D. (1995) A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J. Biol. Chem. 270(14), 7795–7798.

    Article  PubMed  CAS  Google Scholar 

  6. Chinnaiyan, A. M., O’Rourke, K., Yu, G. L., et al. (1996) Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274(5289), 990–992.

    Article  PubMed  CAS  Google Scholar 

  7. Boldin, M. P., Goncharov, T. M., Goltsev, Y. V., and Wallach, D. (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 85(6), 803–815.

    Article  PubMed  CAS  Google Scholar 

  8. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., et al. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85(6), 817–827.

    Article  PubMed  CAS  Google Scholar 

  9. Scaffidi, C., Fulda, S., Srinivasan, A., et al. (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17(6), 1675–1687.

    Article  PubMed  CAS  Google Scholar 

  10. Lou, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490.

    Article  Google Scholar 

  11. Gross, A., Yin, X., Wang, K., et al. (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while Bcl-xL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156–1163.

    Article  PubMed  CAS  Google Scholar 

  12. Zha, J., Weiler, S., Oh, K., Wei, M., and Korsmeyer, S. (2000) Posttranslational N-myristoylation of Bid as a molecular switch for targeting mitochondria and apoptosis. Science 290, 1761–1765.

    Article  PubMed  CAS  Google Scholar 

  13. Walczak, H., Miller, R. E., Ariail, K., et al. (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. 5, 157–163.

    Article  PubMed  CAS  Google Scholar 

  14. Yang, X., Khosravi-Far, R., Chang, H. Y., and Baltimore, D. (1997) Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89, 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  15. Ko, Y.-G., Kim, E.-K., Kim, T., et al. (2001) Glutamine-dependent antiapoptotic interaction of human glutaminyl-trna synthetase with apoptosis signal-regulating kinase 1 J. Biol. Chem. 276, 6030–6036.

    Article  PubMed  CAS  Google Scholar 

  16. Chang, H. Y., Yang, X., and Baltimore, D. (1999) Dissecting Fas signaling with an altered-specificity death-domain mutant: requirement of FADD binding for apoptosis but not Jun N-terminal kinase activation. Proc. Natl. Acad. Sci. USA 96, 1252–1256.

    Article  PubMed  CAS  Google Scholar 

  17. Teitelbaum, S.L. (2000) Osteoclasts, integrins, and osteoporosis. J. Bone Miner. Metab. 18(6), 344–349.

    Article  PubMed  CAS  Google Scholar 

  18. Darnay, B. G. and Aggarwal, B. B. (1999) Signal transduction by tumour necrosis factor and tumour necrosis factor related ligands and their receptors. Ann. Rheum. Dis. 58(Suppl. 1), I2–I13.

    Article  PubMed  CAS  Google Scholar 

  19. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86, 147–157.

    Article  PubMed  CAS  Google Scholar 

  20. Li, L. Y., Luo, X., and Wang, X. (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412(6842), 95–99.

    Article  PubMed  CAS  Google Scholar 

  21. Susin, S. A., Lorenzo, H. K., Zamzami, N., et al. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397(6718), 441–446.

    Article  PubMed  CAS  Google Scholar 

  22. Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42.

    Article  PubMed  CAS  Google Scholar 

  23. Hegde, R., Srinivasula, S. M., Zhang, Z., et al. (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem. 277(1), 432–438.

    Article  PubMed  CAS  Google Scholar 

  24. Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90(3), 405–413.

    Article  PubMed  CAS  Google Scholar 

  25. Zou, H., Li, Y., Liu, X., and Wang, X. (1999) An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556.

    Article  PubMed  CAS  Google Scholar 

  26. Rodriguez, J. and Lazebnik, Y. (1999) Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev. 13, 3179–3184.

    Article  PubMed  CAS  Google Scholar 

  27. Deveraux, Q., Roy, N., Stennicke, H. R., et al. (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17, 2215–2223.

    Article  PubMed  CAS  Google Scholar 

  28. Deveraux, Q. L., Takahashi, R., Salvesen, G. S., and Reed, J. C. (1997) X-linked IAP is a direct inhibitor of cell-death proteases Nature 338, 300–304.

    Google Scholar 

  29. Li, F., Ambrosini, G., Chu, E., et al. (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580–584.

    Article  PubMed  CAS  Google Scholar 

  30. Reed, F. and Bischoff, J. (2000) BIRinging chromosomes through cell division—and survivin’ the experience. Cell 102, 545–548.

    Article  PubMed  CAS  Google Scholar 

  31. Yang, Y., Fang, S., Jensen, J., Weissman, A., and Ashwell, J. (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877.

    Article  PubMed  CAS  Google Scholar 

  32. Deveraux, Q., Leo, E., Stennicke, H., Welsh, K., Salvesen, G., and Reed, J. (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18, 5242–5251.

    Article  PubMed  CAS  Google Scholar 

  33. Bratton, S., Walker, G., Srinivasula, S., et al. (2001) Recruitment, activation and retention of caspase-9 and-3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J. 20, 998–1009.

    Article  PubMed  CAS  Google Scholar 

  34. Chai, J., Shiozaki, E., Srinivasula, S., et al. (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104, 769–780.

    Article  PubMed  CAS  Google Scholar 

  35. Riedl, S., Renatus, M., Schwarzenbacher, R., et al. (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791–800.

    Article  PubMed  CAS  Google Scholar 

  36. Huang, Y., Park, Y., Rich, R., Segal, D., Myszka, D., and Wu, H. (2001) Structural basis of caspase inhibition by XIAP: differential roles of the Linker versus the BIR domain. Cell 104, 781–790.

    PubMed  CAS  Google Scholar 

  37. Datta, R., Oki, E., Endo, K., Biedermann, V., Ren, J., and Kufe, D. (2000) XIAP regulates DNA damage-induced apoptosis downstream of caspase-9 cleavage. J. Biol. Chem. 275, 31733–31738.

    Article  PubMed  CAS  Google Scholar 

  38. Sasaki, H., Sheng, Y., Kotsuji, F., and Tsang, B. (2000) Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res. 60, 5659–5666.

    PubMed  CAS  Google Scholar 

  39. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V., and Baldwin, A. S., Jr. (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and cIAP2 to suppress caspase-8 activation. Science 281, 1680–1683.

    Article  PubMed  CAS  Google Scholar 

  40. Stehlik, C., Martin, R. D., Kumabashiri, M., Binder, B. R., and Lipp, J. (1998) NFκB regulated X-chromosome-linked IAP gene expression protects endothelial cells fron TNFα induced apoptosis. J. Exp. Med. 188, 211–216.

    Article  PubMed  CAS  Google Scholar 

  41. Srinivasula, S. M., Hegde, R., Saleh, A., et al. (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116.

    Article  PubMed  CAS  Google Scholar 

  42. Verhagen, A. M., Silke, J., Ekert, P. G., et al. (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J. Biol. Chem. 277(1), 445–454.

    Article  PubMed  CAS  Google Scholar 

  43. Gross, A., McDonnell, J., and Korsmeyer, S. (1999) Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911.

    Article  PubMed  CAS  Google Scholar 

  44. Adams, J. M. and Cory, S. (1998) The Bcl-2 protein family, arbiters of cell survival. Science 281, 1322–1326.

    Article  PubMed  CAS  Google Scholar 

  45. Hengartner, M. (2000) The biochemistry of apoptosis. Nature 407, 770–775.

    Article  PubMed  CAS  Google Scholar 

  46. Huang, D. and Strasser, A. (2000) BH3-only proteins—essential initiators of apoptotic cell death. Cell 103, 839–842.

    Article  PubMed  CAS  Google Scholar 

  47. Zong, W. X., Lindsten, T., Ross, A., MacGregor, G., and Thompson, C. (2001) BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 15, 1481–1486.

    Article  PubMed  CAS  Google Scholar 

  48. Wei, M., Zong, W. X., Cheng, E., et al. (2001) Proapoptotic BAX and BAK, A requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730.

    Article  PubMed  CAS  Google Scholar 

  49. Eskes, R., Desagher, S., Antonsson, B., and Martinou, J. C. (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20, 929–935.

    Article  PubMed  CAS  Google Scholar 

  50. Wei, M., Lindsten, T., Mootha, V., et al. (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060–2071.

    PubMed  CAS  Google Scholar 

  51. Wiley, S. R., Schooley, K., Smolak, P. J., et al. (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. J. Immun. 3, 673–682.

    CAS  Google Scholar 

  52. Pitti, R. M., Marsters, S. A., Ruppert, S., Donahue, C. F., Moore, A., and Ashkenazi, A. (1996) Induction of apoptosis by Apo-2L ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. 271, 12687–12690.

    Article  PubMed  CAS  Google Scholar 

  53. Ashkenazi, A., Pai, R. C., Fong, S., et al. (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162.

    Article  PubMed  CAS  Google Scholar 

  54. Ogasawara, J., Watanabe-Fukunaga, R., Adachi, M., et al. (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364, 806–809.

    Article  PubMed  CAS  Google Scholar 

  55. Walczak, H., Miller, R. E., Ariail, K., et al. (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. 5, 157–163.

    Article  PubMed  CAS  Google Scholar 

  56. Takimoto, R. and El-Diery, W. S. (2000) Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 19(14), 1735–1743.

    Article  PubMed  CAS  Google Scholar 

  57. Irmler, M., Thome, M., Hahne, M., et al. (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195.

    Article  PubMed  CAS  Google Scholar 

  58. Ichikawa, K., Liu, W., Zhao, L., et al. (2001) Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat. Med. 7(8), 954–960.

    Article  PubMed  CAS  Google Scholar 

  59. Suhara, T., Mano T., Oliveira, B., and Walsh, K. (2001) Phosphatidylinositol 3-kinase/Akt signaling controls endothelial cell sensitivity to Fas-mediated apoptosis via regulation of FLICE-inhibitory protein (FLIP) Circ. Res. 89, 13–19.

    Article  PubMed  CAS  Google Scholar 

  60. Sarraf, P., Mueller, E., Jones, D., et al. (1998) Differentiation and reversal of malignant changes in colon cancer through PPARγ. Nat. Med. 4, 1046–1052.

    Article  PubMed  CAS  Google Scholar 

  61. Elstner, E., Mueller, C., Koshizuka, K., et al. (1998) Ligands for peroxisome proliferator-activated receptorŕ and retinoid acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc. Natl. Acad. Sci. USA 95, 8806–8811.

    Article  PubMed  CAS  Google Scholar 

  62. Kim, Y., Suh, N., Sporn, M., and Reed, J. (2002) Pharmacological reduction in FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. Cancer Res., in press.

    Google Scholar 

  63. Que, F. G., Phan, V. A., Phan, V. H., et al. (1999) Cholangiocarcinomas express Fas ligand and disable the Fas receptor. Hepatology 30, 1398–1404.

    Article  PubMed  CAS  Google Scholar 

  64. Nagane, M., Pan, G., Weddle, J., Dixit, V., Cavenee, W., and Huang, H-S. (2000) Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res. 60, 847–853.

    PubMed  CAS  Google Scholar 

  65. Wen, J., Ramadevi, N., Nguyen, D., Perkins, C., Worthington, E., and Bhalla, K. (2000) Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L-induced apoptosis of human acute leukemia cells. Blood 96, 3900–3906.

    PubMed  CAS  Google Scholar 

  66. Ito, Y., Pramod, P., Sporn, M. B., Datta, R., Kharbanda, S., and Kufe, D. (2001) The novel triterpenoid CDDO induces apoptosis and differentiation of human osteosarcoma cells by a caspase-8 dependent mechanism. Mol. Pharmocol. 595, 1094–1099.

    Google Scholar 

  67. Suh, N., Wang, Y., Honda, T., et al. (1999) A novel synthetic oleanane triterpenoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, with potent differentiating, antiproliferative, and anti-inflammatory activity. Cancer Res. 59(2), 336–341.

    PubMed  CAS  Google Scholar 

  68. Tycko, B. (2000) Epigenetic gene silencing in cancer. J. Clin. Invest. 105, 401–407.

    Article  PubMed  CAS  Google Scholar 

  69. Herman, J. G. and Baylin, S. B. (2000) Promoter-region hypermethylation and gene silencing in human cancer. Curr. Top. Microbiol. Immunol. 249, 35–54.

    PubMed  CAS  Google Scholar 

  70. Hopkins-Donaldson, S., Bodmer, J. L., Bourloud, K., Brognara, C., Tschopp, J., and Gross, N. (2000) Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis inducing ligand-induced apoptosis. Cancer Res. 60, 4315–4319.

    PubMed  CAS  Google Scholar 

  71. Teitz, T., Wei, T., Valentine, M., et al. (2000) Caspase-8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat. Med. 6, 529–535.

    Article  PubMed  CAS  Google Scholar 

  72. Grotzer, M., Eggert, A., Zuzak, T., et al. (2000) Resistance to TRAIL-induced apoptosis in primitive neuroectodermal brain tumor cells correlates with a loss of caspase-8 expression. Oncogene 19, 4604–4610.

    Article  PubMed  CAS  Google Scholar 

  73. Honore, P., Luger, N. M., Sabino, M. A., et al. (2000) Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat. Med. 6(7), 521–528.

    PubMed  CAS  Google Scholar 

  74. Sezer, O., Heider, U., Jakob, C., Eucker, J., and Possinger, K. (2002) Human bone marrow myeloma cells express RANKL. J. Clin. Oncol. 20, 353–354.

    PubMed  Google Scholar 

  75. Nosaka, K., Miyamoto, T., Sakai, T., Mitsuya, H., Suda, T., and Matsuoka, M. (2002) Mechanism of hypercalcemia in adult T-cell leukemia, overexpression of receptor activator of nuclear factor kappaB ligand on adult T-cell leukemia cells. Blood 99(2), 634–640.

    Article  PubMed  CAS  Google Scholar 

  76. Akatsu, T., Murakami, T., Ono, K., et al. (1998) Osteoclastogenesis inhibitory factor exhibits hypocalcemic effects in normal mice and in hypercalcemic nude mice carrying tumors associated with humoral hypercalcemia of malignancy. Bone 23(6), 495–498.

    Article  PubMed  CAS  Google Scholar 

  77. Bullock, G., Ray, S., Reed, J. C., et al. (1996) Intracellular metabolism of Ara-C and resulting DNA fragmentation and apoptosis of human AML HL-60 cells possessing disparate levels of Bcl-2 protein. Leukemia 10, 1731–1740.

    PubMed  CAS  Google Scholar 

  78. Ibrado, A. M., Huang, Y., Fang, G., Liu, L., and Bhalla, K. (1996) Overexpression of Bcl-2 or Bcl-xL inhibits Ara-C-induced CPP32/Yama protease activity and apoptosis of human acute myelogenous leukemia HL-60 cells. Cancer Res. 56, 4743–4748.

    PubMed  CAS  Google Scholar 

  79. Kim, C. N., Wang, X., Huang, Y., et al. (1997) Overexpression of Bcl-xL inhibits Ara-C-induced mitochondrial loss of cytochrome c and other perturbations that activate the molecular cascade of apoptosis. Cancer Res. 57, 3115–3120.

    PubMed  CAS  Google Scholar 

  80. Miyashita, T. and Reed, J. C. (1993) BCL-2 oncoprotein blocks chemotherapy-induced apoptosis in human leukemia cell line. Blood 81, 151–157.

    PubMed  CAS  Google Scholar 

  81. Nakayama, K., Nakayama, K., Negishi, I., Kuida, K., Sawa, H., and Loh, D. Y. (1994) Targeted disruption of Bcl-2 alpha beta in mice: occurrence of gray hair, polycystic kidney disease, and lymphocytopenia. Proc. Natl. Acad. Sci. USA 26, 3700–3704.

    Article  Google Scholar 

  82. Koty, P. P., Zhang, H., and Levitt, M. L. (1999) Antisense bcl-2 treatment increases programmed cell death in non-small cell lung cancer cell lines. Lung Cancer 23(2), 115–127.

    Article  PubMed  CAS  Google Scholar 

  83. Julien, T., Frankel, B., Longo, S., et al. (2000) Antisense-mediated inhibition of the bcl-2 gene induces apoptosis in human malignant glioma. Surg. Neurol. 53(4), 360–369.

    Article  PubMed  CAS  Google Scholar 

  84. Duggan, B. J., Maxwell, P., Kelly, J. D., et al. (2001) The effect of antisense Bcl-2 oligonucleotides on Bcl-2 protein expression and apoptosis in human bladder transitional cell carcinoma. J. Urol. 166(3), 1098–1105.

    Article  PubMed  CAS  Google Scholar 

  85. Pepper, C., Thomas, A., Hoy, T., Cotter, F., and Bentley, P. (1999) Antisense-mediated suppression of Bcl-2 highlights its pivotal role in failed apoptosis in B-cell chronic lymphocytic leukaemia. Br. J. Haematol. 107(3), 611–615.

    Article  PubMed  CAS  Google Scholar 

  86. Uchida, T., Gao, J. P., Wang, C., et al. (2001) Antitumor effect of bcl-2 antisense phosphorothioate oligodeoxynucleotides on human renal-cell carcinoma cells in vitro and in mice. Mol. Urol. 5(2), 71–78.

    Article  PubMed  CAS  Google Scholar 

  87. Gleave, M. E., Miayake, H., Goldie, J., Nelson, C., and Tolcher, A. (1999) Targeting bcl-2 gene to delay androgen-independent progression and enhance chemosensitivity in prostate cancer using antisense bcl-2 oligodeoxynucleotides. Urology 54(6A), 36–46.

    Article  PubMed  CAS  Google Scholar 

  88. Campos, L., Sabido, O., Rouault, J. P., and Guyotat, D. (1994) Effects of bcl-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progenitors and leukemic cells. Blood 84, 595–600.

    PubMed  CAS  Google Scholar 

  89. Jansen, B., Schlagbauer-Wadl, H., Brown, B., et al. (1998) Bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat. Med. 4, 232–234.

    Article  PubMed  CAS  Google Scholar 

  90. Konopleva, M., Tari, A., Estrov, Z., et al. (2000) Liposomal Bcl-2 antisense oligonucleotides enhance proliferation, sensitize acute myeloid leukemia to cytosine-arabinoside, and induce apoptosis independent of other antiapoptotic proteins. Blood 95, 3929–3938.

    PubMed  CAS  Google Scholar 

  91. Miyake, H., Monia, B. P., and Gleave, M. E. (2000) Inhibition of progression to androgen-independence by combined adjuvant treatment with antisense BCL-XL and antisense Bcl-2 oligonucleotides plus taxol after castration in the Shionogi tumor model. Int. J. Cancer 86(6), 855–862.

    Article  PubMed  CAS  Google Scholar 

  92. Leung, S., Miyake, H., Zellweger, T., Tolcher, A., and Gleave, M.E. (2001) Synergistic chemosensitization and inhibition of progression to androgen independence by antisense Bcl-2 oligodeoxynucleotide and paclitaxel in the LNCaP prostate tumor model. Int. J. Cancer 91(6), 846–850.

    Article  PubMed  CAS  Google Scholar 

  93. Bilim, V., Kasahara, T., Noboru, H., Takahashi, K., and Tomita, Y. (2000) Caspase involved synergistic cytotoxicity of bcl-2 antisense oligonucleotides and adriamycin on transitional cell cancer cells. Cancer Lett. 155(2), 191–198.

    Article  PubMed  CAS  Google Scholar 

  94. Jansen, B., Schlagbauer-Wadl, H., Brown, B. D., et al. (1998) bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat. Med. 4(2), 232–234.

    Article  PubMed  CAS  Google Scholar 

  95. Webb, A., Cunningham, D., Cotter, F., et al. (1997) BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 349(9059), 1137–1141.

    Article  PubMed  CAS  Google Scholar 

  96. Waters, J. S., Webb, A., Cunningham, D., et al. (2000) Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J. Clin. Oncol. 18(9), 1812–1823.

    PubMed  CAS  Google Scholar 

  97. Jansen, B., Wacheck, V., Heere-Ress, E., et al. (2000) Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356(9243), 1728–1733.

    Article  PubMed  CAS  Google Scholar 

  98. Miayake, H., Tolcher, A., and Gleave, M. E. (2000) Chemosensitization and delayed androgen-independent recurrence of prostate cancer with the use of antisense Bcl-2 oligodeoxynucleotides. J. Natl. Cancer Inst. 92(1), 34–41.

    Article  PubMed  CAS  Google Scholar 

  99. Zangemeister-Wittke, U., Leech, S., Olie, R., et al. (2000) A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and bcl-xL expression efficiently induces apoptosis in tumor cells. Clin. Cancer Res. 6, 2547–2555.

    PubMed  CAS  Google Scholar 

  100. Holinger, E. P., Chittenden, T., and Lutz, R. J. (1999) Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J. Biol. Chem. 274(19), 13298–13304.

    Article  PubMed  CAS  Google Scholar 

  101. Wang, J. L., Zhang, Z. J., Choksi, S., et al. (2000) Cell permeable Bcl-2 binding peptides: a chemical approach to apoptosis induction in tumor cells. Cancer Res. 60(6), 1498–1502.

    PubMed  CAS  Google Scholar 

  102. Degterev, A., Lugovskoy, A., Cardone, M., et al. (2001) Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL Nat. Cell Biol. 3, 173–182.

    Article  PubMed  CAS  Google Scholar 

  103. Nakashima, T., Miura, M., and Hara, M. (2000) Tetrocarcin A inhibits mitochondrial functions of Bcl-2 and suppresses its anti-apoptotic activity. Cancer Res. 60(5), 1229–1235.

    PubMed  CAS  Google Scholar 

  104. Tzung, S. P., Kim, K. M., Basanez, G., et al. (2001) Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat. Cell Biol. 3(2), 43–46.

    Article  CAS  Google Scholar 

  105. Wang, J. L., Liu, D., Zhang, Z. J., et al. (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA 97(13), 7124–7129.

    Article  PubMed  CAS  Google Scholar 

  106. Deveraux, Q. and Reed, J. C. (1999) IAP family proteins—suppressors of apoptosis. Genes Dev. 13, 239–252.

    Article  PubMed  CAS  Google Scholar 

  107. Li, F. and Altieri, D. (1999) Transcriptional analysis of human survivin gene expression. Biochem. J. 344, 305–311.

    Article  PubMed  CAS  Google Scholar 

  108. O’Connor, D., Grossman, D., Plescia, J., et al. (2000) Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc. Natl. Acad. Sci. USA 97, 13103–13107.

    Article  Google Scholar 

  109. Tamm, I., Wang, Y., Sausville, E., et al. (1998) IAP-Family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 58, 5315–5320.

    PubMed  CAS  Google Scholar 

  110. Chen, J., Wu, W., Tahir, S. K., et al. (2000) Down-regulation of survivin by antisense oligonucleotides increases apoptosis, inhibits cytokinesis and anchorage-independent growth. Blood 2, 235–241.

    CAS  Google Scholar 

  111. Olie, R., Simoes-Wust, A. P., Baumann, B., et al. (2000) A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res. 60, 2805–2809.

    PubMed  CAS  Google Scholar 

  112. Li, F., Ackermann, E., Bennett, C. F., et al. (1999) Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat. Cell Biol. 1, 461–466.

    Article  PubMed  CAS  Google Scholar 

  113. Adida, C., Recher, C., Raffoux, E., et al. (2000) Expression and prognostic significance of survivin in de novo acute myeloid leukemia. Br. J. Haematol. 111, 196–203.

    Article  PubMed  CAS  Google Scholar 

  114. Liu, Z., Sun, C., Olejniczak, E., et al. (2000) Structural basis for binding of Smac/DIA-BLO to the XIAP BIR3 domain. Nature 408, 1004–1012.

    Article  PubMed  CAS  Google Scholar 

  115. Srinivasula, S., Hegde, R., Saleh, A., et al. (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116.

    Article  PubMed  CAS  Google Scholar 

  116. Chai, J., Du, C., Wu, J., Kyin, S., Wang, X., and Shi, Y. (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855–862.

    Article  PubMed  CAS  Google Scholar 

  117. Guo, F., Nimmanapalli, R., Paranawithana, S., et al. (2002) Ectopic overexpression of second mitochondrial-derived activator of caspases (Smac/DIABLO) or co-treatment with N-terminus of Smac peptide potentiates epothilone derivative (BMS 247550) and Apo-2L/TRAIL-induced Apoptosis. Blood 99, in press.

    Google Scholar 

  118. Deng, Y., Lin, Y., and Wu, X. (2002) TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev. 16, 33–45.

    Article  PubMed  CAS  Google Scholar 

  119. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V., and Baldwin, A. S., Jr. (1998) NFκB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683.

    Article  PubMed  CAS  Google Scholar 

  120. Wang, C. Y., Guttridge, D. C., Mayo, M. W., and Baldwin, A. S., Jr. (1999) NFκB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol. Cell. Biol. 19, 5923–5929.

    PubMed  CAS  Google Scholar 

  121. Chen, C., Edelstein, L. C., and Gelinas, C. (2000) The Rel/NFκB family directly activates expression of the apoptosis inhibitor Bcl-xL. Mol. Cell. Biol. 20, 2687–2695

    Article  PubMed  Google Scholar 

  122. Palombella, V. J., Rando, O. J., Goldberg, A. L., and Maniatis, T. (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78(5), 773–785.

    Article  PubMed  CAS  Google Scholar 

  123. Beg, A. A. and Baltimore, D. (1996) An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274(5288), 782–784.

    Article  PubMed  CAS  Google Scholar 

  124. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V., and Baldwin, A. S., Jr. (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation Science 281(5383), 1680–1683.

    Article  PubMed  CAS  Google Scholar 

  125. An, B., Goldfarb, R. H., Siman, R., and Dou, Q. P. (1998) Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclindependent kinase inhibitor p27 and induce apoptosis in transformed but not normal, human fibroblasts. Cell Death Differ. 5(12), 1062–1075.

    Article  PubMed  CAS  Google Scholar 

  126. Ravi, R., Bedi, G., Engstrom, L., et al. (2001) Regulation of death receptor expression and TRAIL/Apo-2L-induced apoptosis by NFB. Nat. Cell Biol. 3, 409–416.

    Article  PubMed  CAS  Google Scholar 

  127. Adams, J., Palombella, V. J., Sausville, E. A., et al. (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59(11), 2615–2622.

    PubMed  CAS  Google Scholar 

  128. Lin, Z. P., Boller, Y. C., Amer, S. M., et al. (1998) Prevention of brefeldin A-induced resistance to teniposide by the proteasome inhibitor MG-132: involvement of NF-kappaB activation in drug resistance. Cancer Res. 58(14), 3059–3065.

    PubMed  CAS  Google Scholar 

  129. Stinchcombe, T. E., Mitchell, B. S., Depcik, V., et al. (2000) PS-341 is active in multiple myeloma: preliminary report of a Phase I trial of the proteasome inhibitor PS-341 in patients with hematologic malignancies (Abstract 2219). Blood 96(Suppl. 1), 516.

    Google Scholar 

  130. Nix, D., Pien, C., Newman, R., et al. (2001) Clinical development of a proteasome inhibitor, PS-341, for the treatment of cancer (Abstract 339). Proc. ASCO 20, 86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Nimmanapalli, R., Bhalla, K. (2003). Targets in Apoptosis Signaling. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 223. Humana Press. https://doi.org/10.1385/1-59259-329-1:465

Download citation

  • DOI: https://doi.org/10.1385/1-59259-329-1:465

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-987-2

  • Online ISBN: 978-1-59259-329-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics