Skip to main content

Assembling a Tumor Progression Model

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 223))

  • 859 Accesses

Abstract

Tumor progression can very broadly be def ined as the progression from a less advanced to a more advanced neoplasm, due to the acquisition of genetic or other cell biologic alterations (Fig. 1). Implicit in this definition is the hypothesis that these acquired cellular alterations endow neoplastic cells with a growth advantage that is subsequently selected for in the evolution of the more advanced lesion (1). As such, these acquired alterations are the answers to many critical questions regarding tumor biology. As an example, consider the transformation that occurs when a benign neoplasm progresses to malignancy. Delineating the events that occur during this process could also yield new clinical tools for diagnosis and treatment, while understanding the forces that drive the acquisition of these alterations could yield insights into putative preventive targets.

Simple model of neoplastic progression. Less advanced neoplasms acquire genetic or epigenetic alterations that are selected for during tumor growth, resulting in clonal evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1

    Office of Human Subjects Research

  2. 2.

    2

    Laser Capture Microdissection

References

  1. Nowell, P. C. (1976) The clonal evolution of tumor cell populations. Science 194, 23–28.

    Article  PubMed  CAS  Google Scholar 

  2. Cotran, R. S., Kumar, V., Collins, T., and Robbins, S. L., Eds. (1999) Robbins Pathologic Basis of Disease. Saunders, Philadelphia.

    Google Scholar 

  3. Ponten, J. and Guo, Z. (1998) Precancer of the human cervix. Cancer Surv. 32, 201–229.

    PubMed  CAS  Google Scholar 

  4. Wahl, G. M. and Carr, A. M. (2001) The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat. Cell. Biol. 3, E277–E286.

    Article  PubMed  CAS  Google Scholar 

  5. Davidoff, A. M., Kerns, B. J., Pence, J. C., Marks, J. R., and Iglehart, J. D. (1991) p53 alterations in all stages of breast cancer. J. Surg. Oncol. 48, 260–267.

    Article  PubMed  CAS  Google Scholar 

  6. Done, S. J., Arneson, N., Ozcelik, H., Redston, M., and Andrulis, I. L. (1998) p53 mutations in mammary ductal carcinoma in situ but not in epithelial hyperplasias. Cancer Res. 58, 785–789.

    PubMed  CAS  Google Scholar 

  7. Done, S. J., Eskandarian, S., Bull, S., Redston, M., and Andrulis, I. L. (2001) p53 missense mutations in microdissected high-grade ductal carcinom in situ of the breast. J. Natl. Cancer Inst. 93, 700–704.

    Article  PubMed  CAS  Google Scholar 

  8. Peltomaki, P. (2001) Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum. Mol. Genet. 10, 735–740.

    Article  PubMed  CAS  Google Scholar 

  9. Young, J., Leggett, B., Gustafson, C., et al. (1993) Genomic instability occurs in colorectal carcinomas but not in adenomas. Hum. Mutat. 2, 351–354.

    Article  PubMed  CAS  Google Scholar 

  10. Iino, H., Simms, L., Young, J., et al. (2000) DNA microsatellite instability and mismatch repair protein loss in adenomas presenting in hereditary non-polyposis colorectal cancer. Gut 47, 37–42.

    Article  PubMed  CAS  Google Scholar 

  11. Jass, J. R., Young, J., and Leggett, B. A. (2000) Hyperplastic polyps and DNA microsatellite unstable cancers of the colorectum. Histopathology 37, 295–301.

    Article  PubMed  CAS  Google Scholar 

  12. Gryfe, R., Kim, H., Hsieh, E. T. K., et al. (2000) Tumor microsatellite instability and patient survival in a population-based series of young colorectal cancer patients. N. Engl. J. Med. 342, 69–77.

    Google Scholar 

  13. Kern, S. E. (2001) Progressive genetic abnormalities in human neoplasia, in The Molecular Basis of Cancer (Mendelsohn, J., Howley, P. M., Israel, M. A., and Liotta, L. A., eds.). Saunders, Philadelphia, pp. 41–69.

    Google Scholar 

  14. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., et al. (1996) Laser capture microdissection. Science 274, 998–1001.

    Article  PubMed  CAS  Google Scholar 

  15. Simone, N. L., Paweletz, C. P., Charbonneau, L., Petricoin, E. F. 3rd, and Liotta, L. A. (2000) Laser capture microdissection: beyond functional genomics to proteomics. Mol. Diagn. 5, 301–307.

    PubMed  CAS  Google Scholar 

  16. Craven, R. A. and Banks, R. E. (2001) Laser capture microdissection and proteomics: possibilities and limitation. Proteomics 1, 1200–1204.

    Article  PubMed  CAS  Google Scholar 

  17. Kern, S. E., Redston, M., Seymour, A. B., et al. (1994) Molecular genetic profiles of colitis-associated neoplasms. Gastroenterology 107, 420–428.

    PubMed  CAS  Google Scholar 

  18. Redston, M. S., Papadopoulos, N., Caldas, C., Kinzler, K. W., and Kern, S. E. (1995) Common occurrence of APC and K-Ras mutations in the spectrum of lesions in colitis-associated neoplasia. Gastroenterology 108, 383–392.

    Article  PubMed  CAS  Google Scholar 

  19. Barrett, M. T., Sanchez, C. A., Prevo, L. J., et al. (1999) Evolution of neoplastic cell lineages in Barrett oesophagus. Nat. Genet. 22, 106–109.

    Article  PubMed  CAS  Google Scholar 

  20. Mirabelli-Primadahl, L., Gryfe, R., Kim, H., et al. Beta-catenin mutations are common in colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathways. Cancer Res. 59, 3346–3351.

    Google Scholar 

  21. Haimowitz, M. D. (1997) Practical issues in tissue banking. Am. J. Clin. Pathol. 107, S75–S81.

    PubMed  CAS  Google Scholar 

  22. Burke, H. B. and Henson, D. E. (1998) Specimen banks for prognostic factor research. Arch. Pathol. Lab. Med. 122, 871–874.

    PubMed  CAS  Google Scholar 

  23. Grizzle, W. E., Aamodt, R., Clausen, K., LiVolsi, V., Pretlow, T. G., and Qualman, S. (1998) Providing human tissues for research: how to establish a program. Arch. Pathol. Lab. Med. 122, 1065–1076.

    PubMed  CAS  Google Scholar 

  24. Fearon, E. R., Hamilton, S. R., and Vogelstein, B. (1987) Clonal analysis of human colorectal tumors. Science 238, 193–197.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Redston, M. (2003). Assembling a Tumor Progression Model. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 223. Humana Press. https://doi.org/10.1385/1-59259-329-1:383

Download citation

  • DOI: https://doi.org/10.1385/1-59259-329-1:383

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-987-2

  • Online ISBN: 978-1-59259-329-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics