Skip to main content

Analysis of Cyclin-Dependent Kinase Activity

  • Protocol
  • 887 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 223))

Abstract

The number of kinases, enzymes whose purpose is to phosphorylate other proteins on serine, threonine, or tyrosine residues, in mammalian cells is presently known to number in the several hundreds or even thousands (1,2). This particular posttranslational modification can dramatically affect the overall function of the affected protein, and is a very tightly regulated process. Therefore, it is no surprise that many avenues of research focus at least partially on the alterations in activity of certain kinases. The cell cycle kinases in particular fluctuate in maximal phosphotransfer ability with respect to the cell cycle. The five cyclin-dependent kinases (CDKs) that possess the major cell cycle phase-transition activities have specific areas of the cell cycle that require their kinase abilities—CDKs 3, 4, and 6 are active during G1 phase, CDK2 functions during the G1-to-S transition and S phase, and cdc2 (also known as cdk1) is essential for the G2-to-mitosis transition (3). In vivo, each kinases activity is affected by the binding of its activating subunit, the cyclin, but also by modifying phosphorylation on the kinase itself. Several lines of evidence have suggested that the specific inhibition of individual CDKs by chemical agents is effective in arresting the cell cycle—a line of research that has spawned the design of such chemicals for therapy in diseases with abnormal cell proliferation such as cancer (46). Assays that detect the activity of endogenous CDK activity are therefore needed to test chemical candidates for such therapy. Here we present a protocol for analysis of kinase activity for cyclin-dependent kinases using general substrates that will detect the broad activity of cyclin-dependent kinases (Fig. 1).

Flowchart of analysis of cyclin-dependent kinase activity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Baltimore, D. (2001) Our genome unveiled. Nature 409, 814–816.

    Article  PubMed  CAS  Google Scholar 

  2. Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001) The sequence of the human genome. Science 291, 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  3. MacLachlan, T. K., Sang, N., and Giordano, A. (1995) Cyclins, cyclin-dependent kinases and cdk inhibitors: implications in cell cycle control and cancer. Crit. Rev. Eukaryot. Gene Expr. 5, 127–156.

    PubMed  CAS  Google Scholar 

  4. Gray, N., Detivaud, L., Doerig, C., and Meijer, L. (1999) ATP-site directed inhibitors of cyclin-dependent kinases. Curr. Med. Chem. 6, 859–875.

    PubMed  CAS  Google Scholar 

  5. Meijer, L., Leclerc, S., and Leost, M. (1999) Properties and potential-applications of chemical inhibitors of cyclin-dependent kinases. Pharmacol. Ther. 82, 279–284.

    Article  PubMed  CAS  Google Scholar 

  6. Noble, M. E. and Endicott, J. A. (1999) Chemical inhibitors of cyclin-dependent kinases: insights into design from X-ray crystallographic studies. Pharmacol. Ther. 82, 269–278.

    Article  PubMed  CAS  Google Scholar 

  7. Giordano, A., Lee, J. H., Scheppler, J. A., et al. (1991) Cell cycle regulation of histone H1 kinase activity associated with the adenoviral protein E1A. Science 253, 1271–1275.

    Article  PubMed  CAS  Google Scholar 

  8. Giordano, A., Whyte, P., Harlow, E., Franza, B. R., Jr., Beach, D., and Draetta, G. (1989) A 60 kd cdc2-associated polypeptide complexes with the E1A proteins in adenovirus-infected cells. Cell 58, 981–990.

    Article  PubMed  CAS  Google Scholar 

  9. Grana, X., De Luca, A., Sang, N., et al. (1994) PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc. Natl. Acad. Sci. USA 91, 3834–3838.

    Article  PubMed  CAS  Google Scholar 

  10. Koff, A., Giordano, A., Desai, D., et al. (1992) Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257, 1689–1694.

    Article  PubMed  CAS  Google Scholar 

  11. Stewart, N. T., Byrne, K. M., Hosick, H. L., Vierck, J. L., and Dodson, M. V. (2000) Traditional and emerging methods for analyzing cell activity in cell culture. Meth. Cell Sci. 22, 67–78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

MacLachlan, T.K., El-Deiry, W.S. (2003). Analysis of Cyclin-Dependent Kinase Activity. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 223. Humana Press. https://doi.org/10.1385/1-59259-329-1:217

Download citation

  • DOI: https://doi.org/10.1385/1-59259-329-1:217

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-987-2

  • Online ISBN: 978-1-59259-329-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics