Skip to main content

Analysis of Tumor Suppressor Gene-Induced Senescence

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 223))

Abstract

Cellular senescence refers to the response of cells to a variety of stimuli, many of which have the potential to induce preneoplastic or neoplastic phenotypes. These stimuli include dysfunctional telomeres, DNA damage, disrupted chromatin structures, the expression of certain oncogenes, and supraphysiologic mitogenic signals. The most prominent outcome of the senescence response is an essentially irreversible arrest of cell proliferation. In addition, senescent cells acquire marked changes in cell morphology and function. In some cases, senescent cells also acquire resistance to certain signals that induce apoptotic cell death (14).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Campisi, J., Dimri, G. P., and Hara, E. (1996) Control of replicative senescence, in Handbook of the Biology of Aging (Schneider, E., and Rowe, J., eds.) Academic Press, New York, pp. 121–149.

    Google Scholar 

  2. Smith, J. R and Pereira-Smith, O. M. (1996) Replicative senescence: implications for in vivo aging and tumor suppression. Science 273, 63–67.

    Article  PubMed  CAS  Google Scholar 

  3. Campisi, J. (2000) Cancer, aging and cellular senescence. In Vivo 14, 183–188.

    PubMed  CAS  Google Scholar 

  4. Bringold F. and Serrano, M. (2000) Tumor suppressors and oncogenes in cellular senescence. Exp. Gerontol. 35, 317–329.

    Article  PubMed  CAS  Google Scholar 

  5. Campisi, J. (1996) Replicative senescence: an old lives tale? Cell 84, 497–500.

    Article  PubMed  CAS  Google Scholar 

  6. Campisi, J. (1997) Aging and cancer: the double-edged sword of replicative senescence. J. Am. Geriatr. Soc. 45, 1–6.

    Google Scholar 

  7. Lundberg, A. S., Hahn, W. C, Gupta, P., and Weinberg, R. A. (2000) Genes involved in senescence and immortalization. Curr. Opin. Cell Biol. 12, 705–709.

    Article  PubMed  CAS  Google Scholar 

  8. Itahana, K., Dimri, G., and Campisi, J. (2001) Regulation of cellular senescence by p53. Eur. J. Biochem. 268, 2784–2791.

    Article  PubMed  CAS  Google Scholar 

  9. Ghebranious, N. and Donehower, L. A. (1998) Mouse models in tumor suppression. Oncogene 17, 3385–3400.

    Article  PubMed  Google Scholar 

  10. Sherr, C. J. (1998) Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12, 2984–2891.

    Article  PubMed  CAS  Google Scholar 

  11. Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991) p53 mutation in human cancer. Science 253, 49–53.

    Article  PubMed  CAS  Google Scholar 

  12. Paggi, M. G., Baldi, A., Bonetto, F., and Giordano, A. (1996) Retinoblastoma protein family in cell cycle and cancer: a review. J. Cell. Biochem. 62, 418–430.

    Article  PubMed  CAS  Google Scholar 

  13. Mcleod, K. (2000) Tumor suppressor genes. Curr. Opin. Genet. Dev. 10, 81–93.

    Article  Google Scholar 

  14. Dimri, G. P. Lee, X., Basile, G., et al. (1995) A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363–9367.

    Article  PubMed  CAS  Google Scholar 

  15. Mishima, K., Handa, J. T., Aotaki-Keen, A., Lutty, G. A., Morse, L. S., and Hjelmeland, L. M. (1999) Senescence-associated beta-galactosidase histochemistry for the primate eye. Invest. Ophthalmol. Vis. Sci. 40, 1590–1593.

    PubMed  CAS  Google Scholar 

  16. Pendergrass, W. R., Lane, M. A., Bodkin, N. L., et al. (1999) Cellular proliferation potential during aging and caloric restriction in rhesus monkeys (Macaca mulatta). J. Cell. Physiol. 180, 123–130.

    Article  PubMed  CAS  Google Scholar 

  17. Paradis, V., Youssef, N., Dargere, D., Ba, N., Bonvoust, F., and Bedossa, P. (2001) Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum. Pathol. 32, 327–332.

    Article  PubMed  CAS  Google Scholar 

  18. Hayflick, L. and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621.

    Article  Google Scholar 

  19. Hayflick, L. (1965) The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636.

    Article  PubMed  CAS  Google Scholar 

  20. Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W., and Harley, C. B. (1992) Telomere end-replication problem and cell aging. J. Mol. Biol. 225, 951–960.

    Article  PubMed  CAS  Google Scholar 

  21. Wright, W. E. and Shay, J. W. (1996) Mechanism of escaping senescence in human diploid cells, in Modern Cell Biology Series—Cellular Aging and Cell Death (Holbrook, N. J., Martin, G. R., and Lockshin, R. A., eds.). Wiley & Sons, Inc., New York, pp. 153–167.

    Google Scholar 

  22. Campisi, J. (1997) The biology of replicative senescence. Eur. J. Cancer 33, 703–709.

    Article  PubMed  CAS  Google Scholar 

  23. Chiu, C. P. and Harley, C. B. (1997) Replicative senescence and cell immortality: the role of telomeres and telomerase. Proc. Soc. Exp. Biol. Med. 214, 99–106.

    PubMed  CAS  Google Scholar 

  24. Bodnar, A. G., Ouellette, M., Frolkis, M., et al. (1998) Extension of life span by introduction of telomerase into normal human cells. Science 279, 349–352.

    Article  PubMed  CAS  Google Scholar 

  25. Ouelette, M. M., Liao, M., Herbert, B. S., et al. (2000) Subsenescent telomere lengths in fibrob-lasts immortalized by limiting amounts of telomerase. J. Biol. Chem. 275, 10072–10076.

    Article  Google Scholar 

  26. Blackburn, E. H. (2000) Telomere states and cell fates. Nature 408, 53–56.

    Article  PubMed  CAS  Google Scholar 

  27. Chin, L., Artandi, S. E., Shen, Q., et al. (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538.

    Article  PubMed  CAS  Google Scholar 

  28. Serrano, M., Lee, H., Chin, L., Cordon-Cardo, C., Beach, D., and DePinho, R. A. (1996) Role of the INK4A locus in tumor suppression and cell mortality. Cell 85, 27–37.

    Article  PubMed  CAS  Google Scholar 

  29. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602.

    Article  PubMed  CAS  Google Scholar 

  30. Shelton, D. N., Chang, E., Whittier, P. S., Choi, D., and Funk, W. D. (1999) Microarray analysis of replicative senescence. Curr. Biol. 9, 939–945.

    Article  PubMed  CAS  Google Scholar 

  31. Rohme, D. (1981) Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Proc. Natl. Acad. Sci. USA 78, 5009–5013.

    Article  PubMed  CAS  Google Scholar 

  32. Kakuo, S., Asaoka, K., and Ide, T. (1999) Human is a unique species among primates in terms of telomere length. Biochem. Biophys. Res. Commun. 263, 308–314.

    Article  PubMed  CAS  Google Scholar 

  33. Sherr, C. J. and DePinho, R. A. (2000) Cellular senescence: mitotic clock or culture shock? Cell 102, 407–410.

    Article  PubMed  CAS  Google Scholar 

  34. Wright, W. E. and Shay, J. W. (2000) Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat. Med. 6, 849–851.

    Article  PubMed  CAS  Google Scholar 

  35. Campisi, J. E. G.-P. (2001) From cells to organisms: can we learn about aging from cells in culture? Exp. Gerontol. 36, 607–618.

    Article  PubMed  CAS  Google Scholar 

  36. Stanulis-Praeger, B. (1987) Cellular senescence revisited: a review. Mech. Aging Dev. 38, 1–48.

    Article  PubMed  CAS  Google Scholar 

  37. Freshney, R. I. (1987) Animal Cell Culture: A Practical Approach, IRL Press, Oxford, UK.

    Google Scholar 

  38. Cristofalo, V. J. and Pignolo, R. J. (1993) Replicative senescence of human fibroblast-like cells in culture. Physiol. Rev. 73, 617–638.

    PubMed  CAS  Google Scholar 

  39. Balin, A. K., Fisher, A. J., and Carter, D. M. (1984) Oxygen modulates growth of human cells at physiological partial pressures. J. Exp. Med. 160, 152–166.

    Article  PubMed  CAS  Google Scholar 

  40. Chen, Q., Fischer, A., Reagan, J. D., Yan, L. J., and Ames, B. N. (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc. Natl Acad. Sci. USA 92, 4337–4341.

    Article  PubMed  CAS  Google Scholar 

  41. Shay, J. W., Pereira-Smith, O. M., and Wright, W. E. (1991) A role for both Rb and p53 in the regulation of human cellular senescence. Exp. Cell Res. 196, 33–39.

    Article  PubMed  CAS  Google Scholar 

  42. Band, V. (1995) Preneoplastic transformation of human mammary epithelial cells. Semin. Cancer Biol. 6, 185–192.

    Article  PubMed  CAS  Google Scholar 

  43. Bond, J. A., Wyllie, F. S., and Wynford-Thomas, D. (1994) Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene 9, 1885–1889.

    PubMed  CAS  Google Scholar 

  44. Hara, E., Tsuri, H., Shinozaki, S., and Oda, K. (1991) Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of lifespan in human diploid fibroblasts, TIG-1. Biochem. Biophys. Res. Commun. 179, 528–534.

    Article  PubMed  CAS  Google Scholar 

  45. Klingelhutz, A., Foster, S. A., and McDougall, J. K. (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79–83.

    Article  PubMed  CAS  Google Scholar 

  46. Whikehart, D. R., Register, S. J., Chang, Q., and Montgomery, B. (2000) Relationship of telomeres and p53 in aging bovine corneal endothelial cell cultures. Invest. Ophthalmol. Vis. Sci. 41, 1070–1075.

    PubMed  CAS  Google Scholar 

  47. Harley, C. B., Futcher, A. B., and Greider, C. W. (1990) Telomeres shorten during aging of human fibroblasts. Nature 345, 458–460.

    Article  PubMed  CAS  Google Scholar 

  48. Allsopp, R. C., Vaziri, H., Patterson, C., et al. (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10114–10118.

    Article  PubMed  CAS  Google Scholar 

  49. Goldstein, S. (1990) Replicative senescence: the human fibroblast comes of age. Science 249, 1129–1133.

    Article  PubMed  CAS  Google Scholar 

  50. Dulic, V., Beney, G. E., Frebourg, G., Drullinger, L. F., and Stein, G. H. (2000) Uncoupling between phenotypic senescence and cell cycle arrest in aging p21-deficient fibroblasts. Mol. Cell. Biol. 20, 6741–6754.

    Article  PubMed  CAS  Google Scholar 

  51. Campisi, J. (1999) Replicative senescence and immortalization, in The Molecular Basis of Cell Cycle and Growth Control (Stein, G., Baserga, R., Giordano, A., and Denhardt, D., eds.). Wiley-Liss, New York, pp. 348–373.

    Google Scholar 

  52. Vaziri, H. and Benchimol, S. (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282.

    Article  PubMed  CAS  Google Scholar 

  53. Yang, J., Chang, E., Cherry, A. M., et al. (1999) Human endothelial cell life extension by telomerase expression. J. Biol. Chem. 274, 26141–26148.

    Article  PubMed  CAS  Google Scholar 

  54. Kiyono, T., Foster, S. A., Koop, J. I., McDougall, J. K., Galloway, D. A., and Klingelhutz, A. J. (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88.

    Article  PubMed  CAS  Google Scholar 

  55. Ramirez, R. D., Morales, C. P., Herbert, B. S., et al. (2001) Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev. 15, 398–403.

    Article  PubMed  CAS  Google Scholar 

  56. Romanov, S. R., Kozakiewicz, B. K., Holst, C. R., Stampfer, M. R., Haupt, L. M., and Tlsty, T. D. (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409, 633–637.

    Article  PubMed  CAS  Google Scholar 

  57. Campisi, J. (1999) Cellular aging/Replicative senescence, in Studies of Aging: Springer Lab Manual (Sternberg, H., and Timiras, P. S., eds.). Springer-Verlag, Berlin, pp. 35–45.

    Google Scholar 

  58. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A., and van Lohuizen, M. (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168.

    Article  PubMed  CAS  Google Scholar 

  59. Jacobs, J. J., Keblusek, P., Robanus-Maandag, E., et al. (2000) Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19/ARF) and is amplified in a subset of human breast cancers. Nat. Genet. 26, 291–299.

    Article  PubMed  CAS  Google Scholar 

  60. McConnell, B. B., Starborg, M., Brookes, S., and Peters, G. (1998) Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr. Biol. 8, 351–354.

    Article  PubMed  CAS  Google Scholar 

  61. Yang, S., Delgado, R., King, S. R., et al. (1999) Generation of retroviral vector for clinical studies using transient transfection. Hum. Gene Ther. 10, 123–132.

    Article  PubMed  CAS  Google Scholar 

  62. Weng, N. P. and Hodes, R. J. (2000) The role of telomerase expression and telomere length maintenance in human and mouse. J. Clin. Immunol. 20, 257–267.

    Article  PubMed  CAS  Google Scholar 

  63. Harvey, M., Sands, A. T., Weiss, R. S., et al. (1993) In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8, 2457–2467.

    PubMed  CAS  Google Scholar 

  64. Mcleod, K. (1999) pRb and E2F-1 in mouse development and tumorigenesis. Curr. Opin. Genet. Dev. 9, 31–39.

    Article  Google Scholar 

  65. Ponten, J. (1976) The relationship between in vitro transformation and tumor formation in vivo. Biochim. Biophys. Acta 458, 397–422.

    PubMed  CAS  Google Scholar 

  66. Sager, R. (1984) Resistance of human cells to oncogenic transformation. Cancer Cells 2, 487–493.

    CAS  Google Scholar 

  67. Hodes, R. J. (1999) Telomere length, aging and somatic cell turnover. J. Exp. Med. 190, 153–156.

    Article  PubMed  CAS  Google Scholar 

  68. Prowse, K. R. and Greider, C. W. (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc. Natl. Acad. Sci. USA 92, 4818–4822.

    Article  PubMed  CAS  Google Scholar 

  69. DePinho, R. A. (2000) The age of cancer. Nature 408, 248–254.

    Article  PubMed  CAS  Google Scholar 

  70. DiLeonardo, A., Linke, S. P., Clarkin, K., and Wahl, G. M. (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540–2551.

    Article  CAS  Google Scholar 

  71. Robles, S. J. and Adami, G. R. (1998) Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16, 1113–1123.

    Article  PubMed  CAS  Google Scholar 

  72. Suzuki, K., Mori, I., Nakayama, Y., Miyakoda, M., Kodama, S., and Watanabe, M. (2001) Radiation-induced senescence-like growth arrest requires TP53 function but not telomere shortening. Radiat. Res. 155, 248–253.

    Article  PubMed  CAS  Google Scholar 

  73. Robles, S. J., Buchler, P. W., Negrusz, A., and Adami, G. R. (1999) Permanent cell cycle arrest in asynchronously proliferating normal human fibroblasts treated with doxorubicin or etoposide but not camptothecin. Biochem. Pharmacol. 58, 675–685.

    Article  PubMed  CAS  Google Scholar 

  74. Chang, B. D., Broude, E. V., Dokmanovic, M., et al. (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 59, 3761–3767.

    PubMed  CAS  Google Scholar 

  75. Ogryzko, V. V., Hirai, T. H., Russanova, V. R., Barbie, D. A., and Howard, B. H. (1996) Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol. Cell. Biol. 16, 5210–5218.

    PubMed  CAS  Google Scholar 

  76. Young, J. I. and Smith, J. R. (2001) DNA methyltransferase inhibition in normal human fibroblasts induces a p21-dependent cell cycle withdrawal. J. Biol. Chem. 276, 19610–19616.

    Article  PubMed  CAS  Google Scholar 

  77. Lin, A. W., Barradas, M., Stone, J. C., van Aelst, L., Serrano, M., and Lowe, S. W. (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12, 3008–3019.

    Article  PubMed  CAS  Google Scholar 

  78. Zhu, J., Woods, D., McMahon, M., and Bishop, J. M. (1998) Senescence of human fibroblasts induced by oncogenic raf. Genes Dev. 12, 2997–3007.

    Article  PubMed  CAS  Google Scholar 

  79. Dimri, G. P., Itahana, K., Acosta, M., and Campisi, J. (2000) Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14/ARF tumor suppressor. Mol. Cell. Biol. 20, 273–285.

    Article  PubMed  CAS  Google Scholar 

  80. Dai, C. Y. and Enders, G. H. (2000) p16 INK4a can initiate and autonomous senescence program. Oncogene 19, 1613–1622.

    Article  PubMed  CAS  Google Scholar 

  81. Uhrbom, L., Nister, M., and Westermark, B. (1997) Induction of senescence in human malignant glioma cells by p16INK4a. Oncogene 15, 505–514.

    Article  PubMed  CAS  Google Scholar 

  82. Ferbeyre, G., de Stanchina, E., Querido, E., Baptiste, N., Prives, C., and Lowe, S. W. (2000) PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027.

    PubMed  CAS  Google Scholar 

  83. Pearson, M., Carbone, R., Sebastiani, C., et al. (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic RAS. Nature 406, 207–210.

    Article  PubMed  CAS  Google Scholar 

  84. Chang, B. D., Watanabe, K., Broude, E. V., et al. (2000) Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc. Natl. Acad. Sci. USA 97, 4291–4296.

    Article  PubMed  CAS  Google Scholar 

  85. Kagawa, S., Fujiwara, T., Kadowaki, Y., et al. (1999) Overexpression of the p21/sdi1 gene induces senescence-like state in human cancer cells: implications for senescence-directed molecular therapy for cancer. Cell Death Differ. 6, 765–772.

    Article  PubMed  CAS  Google Scholar 

  86. Collado, M., Medema, R. H., Garcia-Cao, I., et al. (2000) Inhibition of the phosphoinositide 3-kinase pathway induces a senescence-like arrest mediated by p27 Kip1. J. Biol. Chem. 275, 21960–21968.

    Article  PubMed  CAS  Google Scholar 

  87. Wei, S., Wei, S., and Sedivy, J. M. (1999) Expression of catalytically active telomerase does not prevent premature senescence caused by overexpression of oncogenic Ha-Ras in normal human fibroblasts. Cancer Res. 59, 1539–1543.

    PubMed  CAS  Google Scholar 

  88. Campisi, J. (1998) The role of cellular senescence in skin aging. J. Invest. Dermatol. 3, 1–5.

    CAS  Google Scholar 

  89. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P., and Campisi, J. (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging. Proc. Natl. Acad. Sci. USA 98, 12,072–12,077.

    Article  PubMed  CAS  Google Scholar 

  90. Deng, G., Lu, Y., Zlotnikov, G., Thor, A. D., and Smith, H. S. (1996) Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274, 2057–2059.

    Article  PubMed  CAS  Google Scholar 

  91. Jonason, A. S., Kunala, S., Price, G. T., et al. (1996) Frequent clones of p53-mutated keratinocytes in normal human skin. Proc. Natl. Acad. Sci. USA 93, 14025–14029.

    Article  PubMed  CAS  Google Scholar 

  92. Cha, R. S., Thilly, W. G., and Zarbl, H. (1994) N-nitroso-N-methylurea-induced rat mammary tumors arise from cells with preexisting oncogenic Hras1 gene mutations. Proc. Natl. Acad. Sci. USA 91, 3749–3753.

    Article  PubMed  CAS  Google Scholar 

  93. Ide, T., Tsuji, Y., Ishibashi, S., and Mitsui, Y. (1983) Reinitiation of host DNA synthesis in senescent human diploid cells by infection with simian virus 40. Exp. Cell Res. 143, 343–349.

    Article  PubMed  CAS  Google Scholar 

  94. Gorman, S. D. and Cristofalo, V. J. (1985) Reinitiation of cellular DNA synthesis in BrdU-selected nondividing senescent WI38 cells by simian virus 40 infection. J. Cell. Physiol. 125, 122–126.

    Article  PubMed  CAS  Google Scholar 

  95. Galloway, D. A. and McDougall, J. K. (1989) Human papillomaviruses and carcinomas. Adv. Virus Res. 37, 125–171.

    Article  PubMed  CAS  Google Scholar 

  96. Shay, J. W., Wright, W. R., and Werbin, H. (1991) Defining the molecular mechanisms of human cell immortalization. Biochim. Biophys. Acta 1071, 1–7.

    Google Scholar 

  97. Kierstead, T. D. and Tevethia, M. J. (1993) Association of p53 binding and immortalization of primary C57BL/6 mouse embryo fibroblasts by using simian virus 40 T-antigen mutants bearing internal overlapping deletion mutations. J. Virol. 67, 1817–1829.

    PubMed  CAS  Google Scholar 

  98. Sakamoto, K., Howard, T., Ogryzko, V., et al. (1993) Relative mitogenic activities of wild-type and retinoblastoma binding defective SV40 T antigens in serum deprived and senescent human fibroblasts. Oncogene 8, 1887–1893.

    PubMed  CAS  Google Scholar 

  99. Linskens, M. H. K., Feng, J., Andrews, W. H., et al. (1995) Cataloging altered gene expression in young and senescent cells using enhanced differential display. Nucleic Acids Res. 23, 3244–3251.

    Article  PubMed  CAS  Google Scholar 

  100. Komarova, E. A., Diatchenko, L., Rokhlin, O. W., et al. (1998) Stress-induced secretion of growth inhibitors: a novel tumor suppressor function of p53. Oncogene 17, 1089–1096.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Campisi, J. (2003). Analysis of Tumor Suppressor Gene-Induced Senescence. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 223. Humana Press. https://doi.org/10.1385/1-59259-329-1:155

Download citation

  • DOI: https://doi.org/10.1385/1-59259-329-1:155

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-987-2

  • Online ISBN: 978-1-59259-329-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics