Analyzing the Function of Tumor Suppressor Genes Using a Drosophila Model

  • Raymond A. Pagliarini
  • Ana T. Quiñones
  • Tian Xu
Part of the Methods in Molecular Biology™ book series (MIMB, volume 223)

Abstract

With 1600 eyes, a pair of antennae, 6 legs, and an open circulatory system, the fruit fly Drosophila melanogaster may seem an unlikely model for the host of pathologies resulting from human cancers. However, the results of a century of research in Drosophila only accents the fundamental similarities between many biologic processes in both flies and humans. And as genetic analysis in yeast lent crucial insights into the conserved mechanisms of cell division and cell cycle control (1,2), genetic studies in a relatively simple multicellular organism such as Drosophila can help us understand how mutations in tumor suppressor genes and oncogenes affect organs and tissues, and also help us to find new genes functioning in the processes related to cancer biology. The goal of this chapter is to review how one can use Drosophila as a model to study the functions of tumor suppressor or oncogene homologs, and to identify novel genes involved in tumorigenic processes. We discuss why Drosophila is a relevant model for cancer development in mammals, and why studies in Drosophila offer advantages over a number of other model systems. We review the history of studying cancer in Drosophila, and explain the powerful genetic techniques that allow for refined in-vivo studies of cancer-causing genes.

Keywords

Imaginal Disc Mutant Clone Enhancer Trap Upstream Activate Sequence Nevoid Basal Cell Carcinoma Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Russell, P. (1998) Checkpoints on the road to mitosis. Trends Biochem. Sci. 23, 399–402.PubMedGoogle Scholar
  2. 2.
    Wassmann, K. and Benezra, R. (2001) Mitotic checkpoints: from yeast to cancer. Curr. Opin. Genet. Dev. 11, 83–90.PubMedGoogle Scholar
  3. 3.
    Rubin, G. M., Yandell, M. D., Wortman, J. R., et al. (2000) Comparative genomics of the eukaryotes. Science 287, 2204–2215.PubMedGoogle Scholar
  4. 4.
    Hahn, H., Wojnowski, L., Miller, G., and Zimmer, A. (1999) The patched signaling pathway in tumorigenesis and development: lessons from animal models. J. Mol. Med. 77, 459–468.PubMedGoogle Scholar
  5. 5.
    Booth, D. R. (1999) The hedgehog signalling pathway and its role in basal cell carcinoma. Cancer Metastasis Rev. 18, 261–284.PubMedGoogle Scholar
  6. 6.
    Siegfried, E. and Perrimon, N. (1994) Drosophila wingless: a paradigm for the function and mechanism of Wnt signaling. Bioessays 16, 395–404.PubMedGoogle Scholar
  7. 7.
    Hahn, H., Wicking, C., Zaphiropoulous, P. G., et al. (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851.PubMedGoogle Scholar
  8. 8.
    Nusslein-Volhard, C., Wieschaus, E., and Kluding, H. (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. Roux’s Arch. Dev. Biol. 193, 267–282.Google Scholar
  9. 9.
    Vidwans, S. J. and Su, T. T. (2001) Cycling through development in Drosophila and other metazoa. Nat. Cell Biol. 3, E35–E39.PubMedGoogle Scholar
  10. 10.
    Edgar, B. A. and Lehner, C. F. (1996) Developmental control of cell cycle regulators: a fly’s perspective. Science 274, 1646–1652.PubMedGoogle Scholar
  11. 11.
    Orr-Weaver, T. L. (1994) Developmental modification of the Drosophila cell cycle. Trends Genet. 10, 321–327.PubMedGoogle Scholar
  12. 12.
    Oldham, S., Bohni, R., Stocker, H., Brogiolo, W., and Hafen, E. (2000) Genetic control of size in Drosophila. Phil. Trans. R. Soc. Lond. B, Biol. Sci. 355, 945–952.Google Scholar
  13. 13.
    Stocker, H. and Hafen, E. (2000) Genetic control of cell size. Curr. Opin. Genet. Dev. 10, 529–535.PubMedGoogle Scholar
  14. 14.
    Potter, C. J. and Xu, T. (2001) Mechanisms of size control. Curr. Opin. Genet. Dev. 11, 279–286.PubMedGoogle Scholar
  15. 15.
    Sekelsky, J. J., Brodsky, M. H., and Burtis, K. C. (2000) DNA repair in Drosophila: insights from the Drosophila genome sequence. J. Cell Biol. 150, F31–F36.PubMedGoogle Scholar
  16. 16.
    Abrams, J. M. (1999) An emerging blueprint for apoptosis in Drosophila. Trends Cell Biol. 9, 435–440.PubMedGoogle Scholar
  17. 17.
    Steller, H., Abrams, J. M., Grether, M. E., and White, K. (1994) Programmed cell death in Drosophila. Phil. Trans. R. Soc. Lond. B, Biol. Sci. 345, 247–250.Google Scholar
  18. 18.
    Vernooy, S. Y., Copeland, J., Ghaboosi, N., Griffin, E. E., Yoo, S. J., and Hay, B. A. (2000) Cell death regulation in Drosophila: conservation of mechanism and unique insights. J. Cell Biol. 150, F69–F76.PubMedGoogle Scholar
  19. 19.
    Meier, P., Finch, A., and Evan, G. (2000) Apoptosis in development. Nature 407, 796–801.PubMedGoogle Scholar
  20. 20.
    Lee, C. Y. and Baehrecke, E. H. (2000) Genetic regulation of programmed cell death in Drosophila. Cell Res. 10, 193–204.PubMedGoogle Scholar
  21. 21.
    Bangs, P. and White, K. (2000) Regulation and execution of apoptosis during Drosophila development. Dev. Dyn. 218, 68–79.PubMedGoogle Scholar
  22. 22.
    Joutel, A. and Tournier-Lasserve, E. (1998) Notch signalling pathway and human diseases. Semin. Cell Dev. Biol. 9, 619–625.PubMedGoogle Scholar
  23. 23.
    Cohen, S. M. (1993) Imaginal disc development, in The Development of Drosophila Melanogaster (Bate, M., and Martinez Arias, A., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N Y, vol. 2, pp. 747–842.Google Scholar
  24. 24.
    Bryant, P. J. and Schmidt, O. (1990) The genetic control of cell proliferation in Drosophila imaginal discs. J. Cell Sci. Suppl. 13, 169–189.PubMedGoogle Scholar
  25. 25.
    Capdevila, J. and Johnson, R. L. (2000) Hedgehog signaling in vertebrate and invertebrate limb patterning. Cell. Mol. Life Sci. 57, 1682–1694.PubMedGoogle Scholar
  26. 26.
    Gehring, W. J. (1996) The master control gene for morphogenesis and evolution of the eye. Genes Cells 1, 11–15.PubMedGoogle Scholar
  27. 27.
    Chen, J. N. and Fishman, M. C. (2000) Genetics of heart development. Trends Genet. 16, 383–388.PubMedGoogle Scholar
  28. 28.
    Myers, E. W., Sutton, G. G., Delcher, A. L., et al. (2000) A whole-genome assembly of Drosophila. Science 287, 2196–2204.PubMedGoogle Scholar
  29. 29.
    Adams, M. D., Celniker, S. E., Holt, R. A., et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.PubMedGoogle Scholar
  30. 30.
    Ashburner, M. (1989) Chromosomes, in Drosophila—A Laboratory Manual (Ashburner, M., ed.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, vol. 2, pp. 21–72.Google Scholar
  31. 31.
    Ashburner, M. (1989) Balancers and other special chromosomes, in Drosophila—A Laboratory Manual (Ashburner, M., ed.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, vol. 2, pp. 529–548.Google Scholar
  32. 32.
    Huang, A. M., Rehm, E. J., and Rubin, G. M. (2000) Recovery of DNA sequences flanking P-element insertions: inverse PCR and plasmid rescue, in Drosophila Protocols (Sullivan, W., Ashburner, M., and Hawley, R. S., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 429–438.Google Scholar
  33. 33.
    Spradling, A. C. (1986) P-element mediated transformation, in Drosophila: A Practical Approach (Roberts, D., ed.). IRL Press, Oxford, UK, pp. 175–198.Google Scholar
  34. 34.
    Stark, M. B. (1918) An hereditary tumor in Drosophila. J. Cancer Res. 3, 279–301.Google Scholar
  35. 35.
    Gateff, E. (1978) Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200, 1448–1459.PubMedGoogle Scholar
  36. 36.
    Gateff, E. and Schneiderman, H. A. (1969) Neoplasms in mutant and cultured wild-type tissues of Drosophila. Natl. Cancer Inst. Monogr. 31, 365–397.PubMedGoogle Scholar
  37. 37.
    Watson, K. L., Justice, R. W., and Bryant, P. J. (1994) Drosophila in cancer research: the first fifty tumor suppressor genes. J. Cell Sci. Suppl. 18, 19–33.PubMedGoogle Scholar
  38. 38.
    Gateff, E. and Mechler, B. M. (1989) Tumor-suppressor genes of Drosophila melanogaster. Crit. Rev. Oncog. 1, 221–245.PubMedGoogle Scholar
  39. 39.
    Xu, T., Wang, W., Zhang, S., Stewart, R. A., and Yu, W. (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063.PubMedGoogle Scholar
  40. 40.
    Tao, W., Zhang, S., Turenchalk, G. S., et al. (1999) Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity. Nat. Genet. 21, 177–181.PubMedGoogle Scholar
  41. 41.
    St John, M. A., Tao, W., Fei, X., et al. (1999) Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat. Genet. 21, 182–186.PubMedGoogle Scholar
  42. 42.
    Waltzer, L. and Bienz, M. (1999) The control of beta-catenin and TCF during embryonic development and cancer. Cancer Metastasis Rev. 18, 231–246.PubMedGoogle Scholar
  43. 43.
    Huang, H., Potter, C. J., Tao, W., et al. (1999) PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development 126, 5365–5372.PubMedGoogle Scholar
  44. 44.
    Tapon, N., Ito, N., Dickson, B. J., Treisman, J. E., and Hariharan, I. K. (2001) The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105, 345–355.PubMedGoogle Scholar
  45. 45.
    Potter, C. J., Huang, H., and Xu, T. (2001) Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105, 357–368.PubMedGoogle Scholar
  46. 46.
    Gao, X., Neufeld, T. P., and Pan, D. (2000) Drosophila PTEN regulates cell growth and proliferation through PI3K-dependent and-independent pathways. Dev. Biol. 221, 404–418.PubMedGoogle Scholar
  47. 47.
    Gao, X. and Pan, D. (2001) TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 15, 1383–1392.PubMedGoogle Scholar
  48. 48.
    Goberdhan, D. C., Paricio, N., Goodman, E. C., Mlodzik, M., and Wilson, C. (1999) Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev. 13, 3244–3258.PubMedGoogle Scholar
  49. 49.
    Ashburner, M. (1989) Mutation and mutagenesis, in Drosophila—A Laboratory Handbook (Ashburner, M., ed.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N Y, vol. 2, pp. 299–418.Google Scholar
  50. 50.
    Cooley, L., Kelley, R., and Spradling, A. (1988) Insertional mutagenesis of the Drosophila genome with single P elements. Science 239, 1121–1128.PubMedGoogle Scholar
  51. 51.
    Spradling, A. C., Stern, D. M., Kiss, I., Roote, J., Laverty, T., and Rubin, G. M. (1995) Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc. Natl. Acad. Sci. USA 92, 10824–10830.PubMedGoogle Scholar
  52. 52.
    Xu, T. and Rubin, G. M. (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237.PubMedGoogle Scholar
  53. 53.
    Xu, T. and Harrison, S. D. (1994) Mosaic analysis using FLP recombinase. Meth. Cell Biol. 44, 655–681.Google Scholar
  54. 54.
    Golic, K. G. (1991) Site-specific recombination between homologous chromosomes in Drosophila. Science 252, 958–961.PubMedGoogle Scholar
  55. 55.
    Geyer, P. K., Richardson, K. L., Corces, V. G., and Green, M. M. (1988) Genetic instability in Drosophila melanogaster: P-element mutagenesis by gene conversion. Proc. Natl. Acad. Sci. USA 85, 6455–6459.PubMedGoogle Scholar
  56. 56.
    Margulies, L. and Griffith, C. S. (1991) The synergistic effect of X-rays and deficiencies in DNA repair in P-M hybrid dysgenesis in Drosophila melanogaster. Genet. Res. 58, 15–26.PubMedGoogle Scholar
  57. 57.
    Chen, B., Chu, T., Harms, E., Gergen, J. P., and Strickland, S. (1998) Mapping of Drosophila mutations using site-specific male recombination. Genetics 149, 157–163.PubMedGoogle Scholar
  58. 58.
    Golic, K. G. (1994) Local transposition of P elements in Drosophila melanogaster and recombination between duplicated elements using a site-specific recombinase. Genetics 137, 551–563.PubMedGoogle Scholar
  59. 59.
    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [see comments]. Nature 391, 806–811.PubMedGoogle Scholar
  60. 60.
    Kennerdell, J. R. and Carthew, R. W. (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026.PubMedGoogle Scholar
  61. 61.
    Misquitta, L. and Paterson, B. M. (1999) Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc. Natl. Acad. Sci. USA 96, 1451–1456.PubMedGoogle Scholar
  62. 62.
    Caplen, N. J., Fleenor, J., Fire, A., and Morgan, R. A. (2000) dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95–105.PubMedGoogle Scholar
  63. 63.
    Kennerdell, J. R. and Carthew, R. W. (2000) Heritable gene silencing in Drosophila using double-stranded RNA. Nat. Biotechnol. 18, 896–898.PubMedGoogle Scholar
  64. 64.
    Rong, Y. S. and Golic, K. G. (2000) Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018.PubMedGoogle Scholar
  65. 65.
    Rong, Y. S. and Golic, K. G. (2001) A targeted gene knockout in Drosophila. Genetics 157, 1307–1312.PubMedGoogle Scholar
  66. 66.
    Hama, C., Ali, Z., and Kornberg, T. B. (1990) Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter. Genes Dev. 4, 1079–1093.PubMedGoogle Scholar
  67. 67.
    Hauck, B., Gehring, W. J., and Walldorf, U. (1999) Functional analysis of an eye specific enhancer of the eyeless gene in Drosophila. Proc. Natl. Acad. Sci. USA 96, 564–569.PubMedGoogle Scholar
  68. 68.
    Kim, Y. J. and Baker, B. S. (1993) The Drosophila gene rbp9 encodes a protein that is a member of a conserved group of putative RNA binding proteins that are nervous systemspecific in both flies and humans. J. Neurosci. 13, 1045–1056.PubMedGoogle Scholar
  69. 69.
    Bonner, J. J., Parks, C., Parker-Thornburg, J., Mortin, M. A., and Pelham, H. R. (1984) The use of promoter fusions in Drosophila genetics: isolation of mutations affecting the heat shock response. Cell 37, 979–991.PubMedGoogle Scholar
  70. 70.
    Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.PubMedGoogle Scholar
  71. 71.
    Rorth, P., Szabo, K., Bailey, A., et al. (1998) Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057.PubMedGoogle Scholar
  72. 72.
    Struhl, G. and Basler, K. (1993) Organizing activity of wingless protein in Drosophila. Cell 72, 527–540.PubMedGoogle Scholar
  73. 73.
    St John, M. A. and Xu, T. (1997) Understanding human cancer in a fly? Am. J. Hum. Genet. 61, 1006–1010.PubMedGoogle Scholar
  74. 74.
    Lee, T. and Luo, L. (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 24, 251–254.PubMedGoogle Scholar
  75. 75.
    Lee, T. and Luo, L. (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461.PubMedGoogle Scholar
  76. 76.
    Neufeld, T. P., de la Cruz, A. F., Johnston, L. A., and Edgar, B. A. (1998) Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193.PubMedGoogle Scholar
  77. 77.
    Morata, G. and Ripoll, P. (1975) Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. 42, 211–221.PubMedGoogle Scholar
  78. 78.
    Chou, T. B. and Perrimon, N. (1996) The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144, 1673–1679.PubMedGoogle Scholar
  79. 79.
    Stowers, R. S. and Schwarz, T. L. (1999) A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152, 1631–1639.PubMedGoogle Scholar
  80. 80.
    Foe, V. E., Odell, G. M., and Edgar, B. A. (1993) Mitosis and morphogenesis in the Drosophila embryo: point and counterpoint, in The Development of Drosophila Melanogaster (Bate, M., and Martinez Arias, A., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N Y, vol. 1, pp. 149–300.Google Scholar
  81. 81.
    Su, T. T., Campbell, S. D., and O’Farrell, P. H. (1999) Drosophila grapes/CHK1 mutants are defective in cyclin proteolysis and coordination of mitotic events. Curr. Biol. 9, 919–922.PubMedGoogle Scholar
  82. 82.
    Grosshans, J. and Wieschaus, E. (2000) A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell 101, 523–531.PubMedGoogle Scholar
  83. 83.
    Hazelrigg, T. (2000) GFP and other reporters, in Drosophila Protocols (Sullivan, W., Ashburner, M., and Hawley, R. S., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 313–344.Google Scholar
  84. 84.
    Wolff, T. (2000) Histological techniques for the Drosophila eye. Part I: larva and pupa, in Drosophila Protocols (Sullivan, W., Ashburner, M., and Hawley, R. S., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 201–228.Google Scholar
  85. 85.
    Blair, S. S. (2000) Imaginal discs, in Drosophila Protocols (Sullivan, W., Ashburner, M., and Hawley, R. S., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 159–174.Google Scholar
  86. 86.
    Woods, D. F., Wu, J. W., and Bryant, P. J. (1997) Localization of proteins to the apico-lateral junctions of Drosophila epithelia. Dev. Genet. 20, 111–118.PubMedGoogle Scholar
  87. 87.
    Garoia, F., Guerra, D., Pezzoli, M. C., Lopez-Varea, A., Cavicchi, S., and Garcia-Bellido, A. (2000) Cell behaviour of Drosophila fat cadherin mutations in wing development. Mech. Dev. 94, 95–109.PubMedGoogle Scholar
  88. 88.
    Mahoney, P. A., Weber, U., Onofrechuk, P., Biessmann, H., Bryant, P. J., and Goodman, C. S. (1991) The fat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell 67, 853–868.PubMedGoogle Scholar
  89. 89.
    Bryant, P. J., Huettner, B., Held, L. I., Jr., Ryerse, J., and Szidonya, J. (1988) Mutations at the fat locus interfere with cell proliferation control and epithelial morphogenesis in Drosophila. Dev. Biol. 129, 541–554.PubMedGoogle Scholar
  90. 90.
    Boedigheimer, M. J., Nguyen, K. P., and Bryant, P. J. (1997) Expanded functions in the apical cell domain to regulate the growth rate of imaginal discs. Dev. Genet. 20, 103–110.PubMedGoogle Scholar
  91. 91.
    Boedigheimer, M. and Laughon, A. (1993) Expanded: a gene involved in the control of cell proliferation in imaginal discs. Development 118, 1291–1301.PubMedGoogle Scholar
  92. 92.
    Blaumueller, C. M. and Mlodzik, M. (2000) The Drosophila tumor suppressor expanded regulates growth, apoptosis, and patterning during development. Mech. Dev. 92, 251–262.PubMedGoogle Scholar
  93. 93.
    Jursnich, V. A., Fraser, S. E., Held, L. I., Jr., Ryerse, J., and Bryant, P. J. (1990) Defective gap-junctional communication associated with imaginal disc overgrowth and degeneration caused by mutations of the dco gene in Drosophila. Dev. Biol. 140, 413–429.PubMedGoogle Scholar
  94. 94.
    Woodhouse, E., Hersperger, E., and Shearn, A. (1998) Growth, metastasis, and invasiveness of Drosophila tumors caused by mutations in specific tumor suppressor genes. Dev. Genes Evol. 207, 542–550.PubMedGoogle Scholar
  95. 95.
    Woodhouse, E., Hersperger, E., Stetler-Stevenson, W. G., Liotta, L. A., and Shearn, A. (1994) Increased type IV collagenase in lgl-induced invasive tumors of Drosophila. Cell Growth Differ. 5, 151–159.PubMedGoogle Scholar
  96. 96.
    Strand, D., Jakobs, R., Merdes, G., et al. (1994) The Drosophila lethal(2)giant larvae tumor suppressor protein forms homo-oligomers and is associated with nonmuscle myosin II heavy chain. J. Cell Biol. 127, 1361–1373.PubMedGoogle Scholar
  97. 97.
    Mechler, B. M., McGinnis, W., and Gehring, W. J. (1985) Molecular cloning of lethal(2)giant larvae, a recessive oncogene of Drosophila melanogaster. EMBO J. 4, 1551–1557.PubMedGoogle Scholar
  98. 98.
    Woods, D. F. and Bryant, P. J. (1989) Molecular cloning of the lethal(1)discs large-1 oncogene of Drosophila. Dev. Biol. 134, 222–235.PubMedGoogle Scholar
  99. 99.
    Makino, K., Kuwahara, H., Masuko, N., et al. (1997) Cloning and characterization of NE-dlg: a novel human homolog of the Drosophila discs large (dlg) tumor suppressor protein interacts with the APC protein. Oncogene 14, 2425–2433.PubMedGoogle Scholar
  100. 100.
    Hanada, N., Makino, K., Koga, H., et al. (2000) NE-dlg, a mammalian homolog of Drosophila dlg tumor suppressor, induces growth suppression and impairment of cell adhesion: possible involvement of down-regulation of beta-catenin by NE-dlg expression. Int. J. Cancer 86, 480–488.PubMedGoogle Scholar
  101. 101.
    Bilder, D., Li, M., and Perrimon, N. (2000) Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116.PubMedGoogle Scholar
  102. 102.
    Bilder, D. and Perrimon, N. (2000) Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680.PubMedGoogle Scholar
  103. 103.
    Truman, J. W., Taylor, B. J., and Awad, T. A. (1993) Formation of the adult nervous system, in The Development of Drosophila Melanogaster (Bate, M., and Martinez Arias, A., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N Y, vol. 2, pp. 1245–1276.Google Scholar
  104. 104.
    Peng, C. Y., Manning, L., Albertson, R., and Doe, C. Q. (2000) The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature 408, 596–600.PubMedGoogle Scholar
  105. 105.
    Ohshiro, T., Yagami, T., Zhang, C., and Matsuzaki, F. (2000) Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408, 593–596.PubMedGoogle Scholar
  106. 106.
    Gateff, E., Loffler, T., and Wismar, J. (1993) A temperature-sensitive brain tumor suppressor mutation of Drosophila melanogaster: developmental studies and molecular localization of the gene. Mech. Dev. 41, 15–31.PubMedGoogle Scholar
  107. 107.
    Wismar, J., Loffler, T., Habtemichael, N., et al. (1995) The Drosophila melanogaster tumor suppressor gene lethal(3)malignant brain tumor encodes a proline-rich protein with a novel zinc finger. Mech. Dev. 53, 141–154.PubMedGoogle Scholar
  108. 108.
    Koga, H., Matsui, S., Hirota, T., Takebayashi, S., Okumura, K., and Saya, H. (1999) A human homolog of Drosophila lethal(3)malignant brain tumor (l(3)mbt) protein associates with condensed mitotic chromosomes. Oncogene 18, 3799–3809.PubMedGoogle Scholar
  109. 109.
    Arama, E., Dickman, D., Kimchie, Z., Shearn, A., and Lev, Z. (2000) Mutations in the betapropeller domain of the Drosophila brain tumor (brat) protein induce neoplasm in the larval brain. Oncogene 19, 3706–3716.PubMedGoogle Scholar
  110. 110.
    Sonoda, J. and Wharton, R. P. (2001) Drosophila brain tumor is a translational repressor. Genes Dev. 15, 762–773.PubMedGoogle Scholar
  111. 111.
    Spradling, A. C. (1993) Developmental genetics of oogenesis, in The Development of Drosophila Melanogaster (Bate, M., and Martinez Arias, A., Eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, vol. 1, pp. 1–70Google Scholar
  112. 112.
    McKearin, D. and Christerson, L. (1994) Molecular genetics of the early stages of germ cell differentiation during Drosophila oogenesis. Ciba Found. Symp. 182, 210–219.PubMedGoogle Scholar
  113. 113.
    McKearin, D. and Ohlstein, B. (1995) A role for the Drosophila bag-of-marbles protein in the differentiation of cystoblasts from germline stem cells. Development 121, 2937–2947.PubMedGoogle Scholar
  114. 114.
    Gonczy, P., Matunis, E., and DiNardo, S. (1997) bag-of-marbles and benign gonial cell neoplasm act in the germline to restrict proliferation during Drosophila spermatogenesis. Development 124, 4361–4371.PubMedGoogle Scholar
  115. 115.
    Lavoie, C. A., Ohlstein, B., and McKearin, D. M. (1999) Localization and function of Bam protein require the benign gonial cell neoplasm gene product. Dev. Biol. 212, 405–413.PubMedGoogle Scholar
  116. 116.
    Ohlstein, B., Lavoie, C. A., Vef, O., Gateff, E., and McKearin, D. M. (2000) The Drosophila cystoblast differentiation factor, benign gonial cell neoplasm, is related to DExH-box proteins and interacts genetically with bag-of-marbles. Genetics 155, 1809–1819.PubMedGoogle Scholar
  117. 117.
    King, R. C. and Storto, P. D. (1988) The role of the otu gene in Drosophila oogenesis. Bioessays 8, 18–24.PubMedGoogle Scholar
  118. 118.
    Ghelelovitch, S. (1969) Melanotic tumors in Drosophila melanogaster. Natl. Cancer Inst. Monogr. 31, 263–275.PubMedGoogle Scholar
  119. 119.
    Mathey-Prevot, B. and Perrimon, N. (1998) Mammalian and Drosophila blood: JAK of all trades? Cell 92, 697–700.PubMedGoogle Scholar
  120. 120.
    Binari, R. and Perrimon, N. (1994) Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes Dev. 8, 300–312.PubMedGoogle Scholar
  121. 121.
    Hanratty, W. P. and Dearolf, C. R. (1993) The Drosophila tumorous-lethal hematopoietic oncogene is a dominant mutation in the hopscotch locus. Mol. Gen. Genet. 238, 33–37.PubMedGoogle Scholar
  122. 122.
    Harrison, D. A., Binari, R., Nahreini, T. S., Gilman, M., and Perrimon, N. (1995) Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 14, 2857–2865.PubMedGoogle Scholar
  123. 123.
    Watson, K. L., Konrad, K. D., Woods, D. F., and Bryant, P. J. (1992) Drosophila homolog of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system. Proc. Natl. Acad. Sci. USA 89, 11302–11306.PubMedGoogle Scholar
  124. 124.
    Su, T. T. and O’Farrell, P. H. (1998) Size control: cell proliferation does not equal growth. Curr. Biol. 8, R687–R689.PubMedGoogle Scholar
  125. 125.
    Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N., and Gallant, P. (1999) Drosophila myc regulates cellular growth during development. Cell 98, 779–790.PubMedGoogle Scholar
  126. 126.
    Ito, N. and Rubin, G. M. (1999) gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle. Cell 96, 529–539.PubMedGoogle Scholar
  127. 127.
    Wolff, T. (2000) Histological techniques for the Drosophila eye. Part II: adult, in Drosophila Protocols (Sullivan, W., Ashburner, M., and Hawley, R. S., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 229–244.Google Scholar
  128. 128.
    Sweeney, S. T., Hidalgo, A., deBelle, J. S., and Keshishian, H. (2000) Functional cell ablation, in Drosophila Protocols (Sullivan, W., Ashburner, M., and Hawley, R. S., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 449–478.Google Scholar
  129. 129.
    Hay, B. A., Wolff, T., and Rubin, G. M. (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120, 2121–2129.PubMedGoogle Scholar
  130. 130.
    Brachmann, C. B., Jassim, O. W., Wachsmuth, B. D., and Cagan, R. L. (2000) The Drosophila bcl-2 family member dBorg-1 functions in the apoptotic response to UV-irradiation. Curr. Biol. 10, 547–550.PubMedGoogle Scholar
  131. 131.
    Han, M. (1992) Ras proteins in developmental pattern formation in Caenorhabditis elegans and Drosophila. Semin. Cancer Biol. 3, 219–228.Google Scholar
  132. 132.
    Wassarman, D. A., Therrien, M., and Rubin, G. M. (1995) The Ras signaling pathway in Drosophila. Curr. Opin. Genet. Dev. 5, 44–50.PubMedGoogle Scholar
  133. 133.
    Miller, J. R. and Moon, R. T. (1996) Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev. 10, 2527–2539.PubMedGoogle Scholar
  134. 134.
    Currie, P. D. (1998) Hedgehog’s escape from Pandora’s box. J. Mol. Med. 76, 421–433.PubMedGoogle Scholar
  135. 135.
    Stern, D. L. and Sucena, E. (2000) Preparation of larval and adult cuticles for light microscopy, in Drosophila Protocols (Sullivan, W., Ashburner, M., and Hawley, R. S., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 601–616.Google Scholar
  136. 136.
    Casci, T. and Freeman, M. (1999) Control of EGF receptor signalling: lessons from fruitflies. Cancer Metastasis Rev. 18, 181–201.PubMedGoogle Scholar
  137. 137.
    Nilson, L. A. and Schupbach, T. (1999) EGF receptor signaling in Drosophila oogenesis. Curr. Top. Dev. Biol. 44, 203–243.PubMedGoogle Scholar
  138. 138.
    Wasserman, J. D. and Freeman, M. (1998) An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell 95, 355–364.PubMedGoogle Scholar
  139. 139.
    Basler, K. and Struhl, G. (1994) Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368, 208–214.PubMedGoogle Scholar
  140. 140.
    Robinow, S. and White, K. (1988) The locus elav of Drosophila melanogaster is expressed in neurons at all developmental stages. Dev. Biol. 126, 294–303.PubMedGoogle Scholar
  141. 141.
    Hynes, R. O. and Zhao, Q. (2000) The evolution of cell adhesion. J. Cell Biol. 150, F89–F96.PubMedGoogle Scholar
  142. 142.
    Tepass, U. (1999) Genetic analysis of cadherin function in animal morphogenesis. Curr. Opin. Cell Biol. 11, 540–548.PubMedGoogle Scholar
  143. 143.
    Takeichi, M., Nakagawa, S., Aono, S., Usui, T., and Uemura, T. (2000) Patterning of cell assemblies regulated by adhesion receptors of the cadherin superfamily. Phil. Trans. R. Soc. Lond. B, Biol. Sci. 355, 885–890.Google Scholar
  144. 144.
    Brown, N. H. (2000) Cell-cell adhesion via the ECM: integrin genetics in fly and worm. Matrix Biol. 19, 191–201.PubMedGoogle Scholar
  145. 145.
    Brown, N. H., Gregory, S. L., and Martin-Bermudo, M. D. (2000) Integrins as mediators of morphogenesis in Drosophila. Dev. Biol. 223, 1–16.PubMedGoogle Scholar
  146. 146.
    Brower, D. L., Brabant, M. C., and Bunch, T. A. (1995) Role of the PS integrins in Drosophila development. Immunol. Cell Biol. 73, 558–564.PubMedGoogle Scholar
  147. 147.
    Murray, M. A., Fessler, L. I., and Palka, J. (1995) Changing distributions of extracellular matrix components during early wing morphogenesis in Drosophila. Dev. Biol. 168, 150–165.PubMedGoogle Scholar
  148. 148.
    Walsh, E. P. and Brown, N. H. (1998) A screen to identify Drosophila genes required for integrin-mediated adhesion. Genetics 150, 791–805.PubMedGoogle Scholar
  149. 149.
    Forbes, A. and Lehmann, R. (1999) Cell migration in Drosophila. Curr. Opin. Genet. Dev. 9, 473–478.PubMedGoogle Scholar
  150. 150.
    Montell, D. J. (1999) The genetics of cell migration in Drosophila melanogaster and Caenorhabditis elegans development. Development 126, 3035–3046.PubMedGoogle Scholar
  151. 151.
    Gomperts, M., Wylie, C., and Heasman, J. (1994) Primordial germ cell migration. Ciba Found. Symp. 182, 121–134.PubMedGoogle Scholar
  152. 152.
    Jaglarz, M. K. and Howard, K. R. (1995) The active migration of Drosophila primordial germ cells. Development 121, 3495–3503.PubMedGoogle Scholar
  153. 153.
    Saffman, E. E. and Lasko, P. (1999) Germline development in vertebrates and invertebrates. Cell Mol. Life Sci. 55, 1141–1163.PubMedGoogle Scholar
  154. 154.
    Bai, J., Uehara, Y., and Montell, D. J. (2000) Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103, 1047–1058.PubMedGoogle Scholar
  155. 155.
    Chen, J., Godt, D., Gunsalus, K., Kiss, I., Goldberg, M., and Laski, F. A. (2001) Cofilin/ADF is required for cell motility during Drosophila ovary development and oogenesis. Nat. Cell Biol. 3, 204–209.PubMedGoogle Scholar
  156. 156.
    Fox, G. L., Rebay, I., and Hynes, R. O. (1999) Expression of DFak56, a Drosophila homolog of vertebrate focal adhesion kinase, supports a role in cell migration in vivo. Proc. Natl. Acad. Sci. USA 96, 14978–14983.PubMedGoogle Scholar
  157. 157.
    Lee, T., Feig, L., and Montell, D. J. (1996) Two distinct roles for Ras in a developmentally regulated cell migration. Development 122, 409–418.PubMedGoogle Scholar
  158. 158.
    Lee, T. and Montell, D. J. (1997) Multiple Ras signals pattern the Drosophila ovarian follicle cells. Dev. Biol. 185, 25–33.PubMedGoogle Scholar
  159. 159.
    Murphy, A. M. and Montell, D. J. (1996) Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. J. Cell Biol. 133, 617–630.PubMedGoogle Scholar
  160. 160.
    Niewiadomska, P., Godt, D., and Tepass, U. (1999) DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144, 533–547.PubMedGoogle Scholar
  161. 161.
    Hing, H., Xiao, J., Harden, N., Lim, L., and Zipursky, S. L. (1999) Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila. Cell 97, 853–863.PubMedGoogle Scholar
  162. 162.
    Henderson, D. S. (1999) DNA repair defects and other (mus)takes in Drosophila melanogaster. Methods 18, 377–400.PubMedGoogle Scholar
  163. 163.
    Morris, J. and Lehmann, R. (1999) Drosophila oogenesis: versatile spn doctors. Curr. Biol. 9, R55–R58.PubMedGoogle Scholar
  164. 164.
    Vogel, E. W. and Nivard, M. J. (1993) Performance of 181 chemicals in a Drosophila assay predominantly monitoring interchromosomal mitotic recombination. Mutagenesis 8, 57–81.PubMedGoogle Scholar
  165. 165.
    Ghabrial, A., Ray, R. P., and Schupbach, T. (1998) okra and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes Dev. 12, 2711–2723.PubMedGoogle Scholar
  166. 166.
    Karim, F. D., Chang, H. C., Therrien, M., Wassarman, D. A., Laverty, T., and Rubin, G. M. (1996) A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics 143, 315–329.PubMedGoogle Scholar
  167. 167.
    Avery, L. and Wasserman, S. (1992) Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet. 8, 312–316.PubMedGoogle Scholar
  168. 168.
    Guarente, L. (1993) Synthetic enhancement in gene interaction: a genetic tool come of age. Trends Genet. 9, 362–366.PubMedGoogle Scholar
  169. 169.
    Giordano, A. and Kaiser, H. E. (1996) The retinoblastoma gene: its role in cell cycle and cancer. In Vivo 10, 223–227.PubMedGoogle Scholar
  170. 170.
    Metzger, R. J. and Krasnow, M. A. (1999) Genetic control of branching morphogenesis. Science 284, 1635–1639.PubMedGoogle Scholar
  171. 171.
    Zelzer, E. and Shilo, B. Z. (2000) Cell fate choices in Drosophila tracheal morphogenesis. Bioessays 22, 219–226.PubMedGoogle Scholar
  172. 172.
    Jarecki, J., Johnson, E., and Krasnow, M. A. (1999) Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF. Cell 99, 211–220.PubMedGoogle Scholar
  173. 173.
    Echalier, G. (1997) Drosophila continuous cell lines, in Drosophila Cells in Culture (Echalier, G., ed.). Morgan Kaufmann, San Francisco, CA, pp. 131–187.Google Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Raymond A. Pagliarini
    • 1
  • Ana T. Quiñones
    • 2
  • Tian Xu
    • 1
  1. 1.Boyer Center for Molecular MedicineYale University School of MedicineNew Haven
  2. 2.Yale University School of MedicineNew Haven

Personalised recommendations