Skip to main content

The Regulation of Tumor Suppressor Genes by Oncogenes

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 222))

  • 911 Accesses

Abstract

Tumor suppressor genes (TSGs) and oncogenes represent the ying and the yang of cell growth, differentiation, and survival control. TSGs such as p53, the retinoblastoma (RB) gene product, and the cyclin kinase inhibitor (CKI) proteins p21 Cip-1/WAF1/mda6 (p21), p27 Kip-1 (p27), p16 INK4a (p16), and p19 ARF (p19), play the role of negative regulators of the cell cycle (15). In contrast, mutation of protooncogenes such as the epidermal growth factor receptor (EGFR) (6), ErbB2 (Neu) (7), Ras (8,9), Raf-1 (10), PTEN (11,12), MKP-1 (13), and c-Myc (14) can promote cell cycle progression, in part by abrogating the negative regulation of the cell cycle by tumor suppressor genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malumbres, M., Ortega, S., and Barbacid, M. (2000) Genetic analysis of mammalian cyclindependent kinases and their inhibitors. Biol. Chem. 381, 827–838.

    PubMed  CAS  Google Scholar 

  2. Masciullo, V., Khalili, K., and Giordano, A. (2000) The Rb family of cell cycle regulatory factors: clinical implications. Int. J. Oncol. 17, 897–902.

    PubMed  CAS  Google Scholar 

  3. Bringold, F. and Serrano, M. (2000) Tumor suppressors and oncogenes in cellular senescence. Exp. Gerontol. 35, 317–329.

    PubMed  CAS  Google Scholar 

  4. Lowe, S. W. (1999) Activation of p53 by oncogenes. Endocr. Relat. Cancer 6, 45–48.

    PubMed  CAS  Google Scholar 

  5. Sherr, C. J. (2000) The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 60, 3689–3695.

    PubMed  CAS  Google Scholar 

  6. Antonyak, M. A., Moscatello, D. K., and Wong, A. J. (1998) Constitutive activation of c-Jun N-terminal kinase by a mutant epidermal growth factor receptor. J. Biol. Chem. 273, 2817–2822.

    PubMed  CAS  Google Scholar 

  7. Hynes, N. E. (1996) ErbB2 activation and signal transduction in normal and malignant mammary cells. J. Mammary Gland Biol. Neoplasia 1, 199–206.

    PubMed  CAS  Google Scholar 

  8. Shields, J. M., Pruitt, K., McFall, A., Shaub, A., and Der, C. J. (2000) Understanding Ras: “it ain’t over’ til it’s over.” Trends Cell Biol. 10, 147–154.

    PubMed  CAS  Google Scholar 

  9. Sebti, S. M. and Hamilton, A. D. (2000) Farnesyltransferase and geranylgeranyltransferase I inhibitors in cancer therapy: important mechanistic and bench to bedside issues. Expert Opin. Investig. Drugs 9, 2767–2782.

    PubMed  CAS  Google Scholar 

  10. Kolch, W. (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. 351, 289–305.

    PubMed  CAS  Google Scholar 

  11. Maehama, T. and Dixon, J. E. (1999) PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 9, 125–128.

    PubMed  CAS  Google Scholar 

  12. Vazquez, F. and Sellers, W. R. (2000) The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling Biochim. Biophys. Acta 1470, M21–M35.

    PubMed  CAS  Google Scholar 

  13. Yokoyama, A., Karasaki, H., Urushibara, N., et al. (1997) The characteristic gene expressions of MAPK phosphatases 1 and 2 in hepatocarcinogenesis, rat ascites hepatoma cells, and regenerating rat liver. Biochem. Biophys. Res. Commun. 239, 746–751.

    PubMed  CAS  Google Scholar 

  14. Lee, C. M. and Reddy, E. P. (1999) The v-myc oncogene. Oncogene 18, 2997–3003.

    PubMed  CAS  Google Scholar 

  15. Roovers K. (2000) Assoian RK integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays 22(9), 818–826.

    PubMed  CAS  Google Scholar 

  16. Kyriakis, J. M. (1999) Making the connection: coupling of stress-activated ERK/MAPK (extracellular-signal-regulated kinase/mitogen-activated protein kinase) core signalling modules to extracellular stimuli and biological responses. Biochem. Soc. Symp. 64, 29–48.

    PubMed  CAS  Google Scholar 

  17. Vanhaesebroeck, B. and Alessi, D. R. (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576.

    PubMed  CAS  Google Scholar 

  18. Dufner, A. and Thomas, G. (1999) Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253, 100–109.

    PubMed  CAS  Google Scholar 

  19. Tibbles, L. A. and Woodgett, J. R. (1999) The stress-activated protein kinase pathways. Cell. Mol. Life Sci. 55, 1230–1254.

    PubMed  CAS  Google Scholar 

  20. Davis, R. J. (1999) Signal transduction by the c-Jun N-terminal kinase. Biochem. Soc. Symp. 64, 1–12.

    PubMed  CAS  Google Scholar 

  21. Moscatello, D. K., Holgado-Madruga, M., Emlet, D. R., Montgomery, R. B., and Wong, A. J. (1998) Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J. Biol. Chem. 273, 200–206.

    PubMed  CAS  Google Scholar 

  22. Norgaard, P., Law, B. K., Plovisson, H. S., and Moses, H. L. (1999) Farnesyltransferase inhibitor-induced regression of mammary tumors in TGF alpha and TGF alpha/neu transgenic mice correlates with inhibition of map kinase and p70s6 kinase phosphorylation. Ann. N.Y. Acad. Sci. 886, 265–268.

    PubMed  CAS  Google Scholar 

  23. Gire, V., Marshall, C., and Wynford-Thomas, D. (2000) PI-3-kinase is an essential anti-apoptotic effector in the proliferative response of primary human epithelial cells to mutant RAS. Oncogene 19, 2269–2276.

    PubMed  CAS  Google Scholar 

  24. De Ruiter, N. D., Wolthuis, R. M., van Dam, H., Burgering, B. M., and Bos, J. L. (2000) Ras-dependent regulation of c-Jun phosphorylation is mediated by the ral guanine nucleotide exchange factor-Ral pathway. Mol. Cell. Biol. 20, 8480–8488.

    PubMed  Google Scholar 

  25. Stofega, M. R., Yu, C. L., Wu, J., and Jove, R. (1997) Activation of extracellular signalregulated kinase (ERK) by mitogenic stimuli is repressed in v-Src-transformed cells. Cell Growth Differ. 8, 113–119.

    PubMed  CAS  Google Scholar 

  26. Rommel, C., Clarke, B. A., Zimmermann, S., et al. (1999) Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286, 1738–1741.

    PubMed  CAS  Google Scholar 

  27. Liu, H., Kublaoui, B., Pilch, P. F., and Lee, J. (2000) Insulin activation of mitogen-activated protein (MAP) kinase and Akt is phosphatidylinositol 3-kinase-dependent in rat adipocytes. Biochem. Biophys. Res. Commun. 274, 845–851.

    PubMed  CAS  Google Scholar 

  28. Fukazawa, H. and Uehara, Y. (2000) U0126 reverses Ki-ras-mediated transformation by blocking both mitogen-activated protein kinase and p70 S6 kinase pathways. Cancer Res. 60, 2104–2107.

    PubMed  CAS  Google Scholar 

  29. Chaudhary, A., King, W. G., Mattaliano, M. D., et al. (2000) Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Curr. Biol. 10, 551–554.

    PubMed  CAS  Google Scholar 

  30. Manzano, R. G., Montuenga, L., Dayton, M., et al. (2001) CL100 has tumor suppressor properties in vivo and its downregulation is important in the progression of epithelial ovarian cancer. Cancer Res., in press.

    Google Scholar 

  31. Harper, J. W., Elledge, S. J., Keyomarsi, K., et al. Inhibition of cyclin dependent kinases by p21. Mol. Biol. Cell. 6, 387–400.

    Google Scholar 

  32. Serrano, M., Lin, A. W., McCurrah, M. E., Beach, D., and Lowe, S. W. (1997) Oncogenic Ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602.

    PubMed  CAS  Google Scholar 

  33. El-Deiry, W. S. (1998) p21/p53, cellular growth control and genomic integrity. Curr. Top. Microbiol. Immunol. 227, 121–137.

    PubMed  CAS  Google Scholar 

  34. Claassen, G. F. and Hann, S. R. (2000) A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor beta-induced cell-cycle arrest. Proc. Natl. Acad. Sci. USA 97, 9498–9503.

    PubMed  CAS  Google Scholar 

  35. Kibbe, M. R., Li, J., Nie, S., et al. (2000) Inducible nitric oxide synthase (iNOS) expression upregulates p21 and inhibits vascular smooth muscle cell proliferation through p42/44 mitogen-activated protein kinase activation and independent of p53 and cyclic guanosine monophosphate. J. Vasc. Surg. 31, 1214–1228.

    PubMed  CAS  Google Scholar 

  36. Delgado, M. D., Vaque, J. P., Arozarena, I., et al. (2000) H-, K-and N-Ras inhibit myeloid leukemia cell proliferation by a p21WAF1-dependent mechanism. Oncogene 19, 783–790.

    PubMed  CAS  Google Scholar 

  37. Beier, F., Taylor, A. C., and LuValle, P. (1999) The Raf-1/MEK/ERK pathway regulates the expression of the p21(Cip1/Waf1) gene in chondrocytes. J. Biol. Chem. 274, 30273–30279.

    PubMed  CAS  Google Scholar 

  38. Serrano, M. (2000) The INK4a/ARF locus in murine tumorigenesis. Carcinogenesis 21, 865–869.

    PubMed  CAS  Google Scholar 

  39. Roussel, M. F. (1999) The INK4 family of cell cycle inhibitors in cancer. Oncogene 18, 5311–5317.

    PubMed  CAS  Google Scholar 

  40. Sharpless, N. E. and DePinho, R. A. (1999) The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev. 9, 22–30.

    PubMed  CAS  Google Scholar 

  41. Sherr, C. J. and Weber, J. D. (2000) The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99.

    PubMed  CAS  Google Scholar 

  42. Tombes, R., Auer, K. L., Brenz-Verca, S., et al. (1998) The mitogen-activated protein (MAP) kinase cascade can either stimulate or inhibit DNA synthesis in primary cultures of rat hepatocytes depending upon whether its activation is acute/phasic or chronic. Biochem. J. 330, 1451–1460.

    PubMed  CAS  Google Scholar 

  43. Dijkers, P. F., Medema, R. H., Pals, C., et al. (2000) Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27. Mol. Cell. Biol. 20, 9138–9148.

    PubMed  CAS  Google Scholar 

  44. Busse, D., Doughty, R. S., Ramsey, T. T., et al. (2000) Reversible G(1) arrest induced by inhibition of the epidermal growth factor receptor tyrosine kinase requires up-regulation of p27(KIP1) independent of MAPK activity. J. Biol. Chem. 275, 6987–6995.

    PubMed  CAS  Google Scholar 

  45. Inoue, K., Wen, R., Rehg, J. E., et al. (2000) Disruption of the ARF transcriptional activator DMP1 facilitates cell immortalization, Ras transformation, and tumorigenesis. Genes Dev. 14, 1797–1809.

    PubMed  CAS  Google Scholar 

  46. Weber, J. D., Kuo, M. L., Bothner, B., et al. (2000) Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol. Cell. Biol. 20, 2517–2528.

    PubMed  CAS  Google Scholar 

  47. Ries, S., Biederer, C., Woods, D., et al. (2000) Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103, 321–330.

    PubMed  CAS  Google Scholar 

  48. Sherr, C. J. and Roberts, J. M. (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512.

    PubMed  CAS  Google Scholar 

  49. Keyomarsi, K. and Herliczek, T. W. (1997) The role of cyclin E in cell proliferation, development and cancer. Prog. Cell Cycle Res. 3, 171–191.

    PubMed  CAS  Google Scholar 

  50. Gille, H. and Downward, J. (1999) Multiple ras effector pathways contribute to G(1) cell cycle progression. J. Biol. Chem. 274, 22033–22040.

    PubMed  CAS  Google Scholar 

  51. Sandhu, C., Donovan, J., Bhattacharya, N., Stampfer, M., Worland, P., and Slingerland, J. (2000) Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in human mammary epithelial cells. Oncogene 19, 5314–5323.

    PubMed  CAS  Google Scholar 

  52. Nakamura, N., Ramaswamy, S., Vazquez, F., Signoretti, S., Loda, M., and Sellers, W. R. (2000) Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol. Cell. Biol. 20, 8969–8982.

    PubMed  CAS  Google Scholar 

  53. Waga, S., Hannon, G. J., Beach, D., and Stillman, B. (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369, 574–578.

    PubMed  CAS  Google Scholar 

  54. Zhang, H., Hannon, G. J., and Beach, D. (1994) p21-containing cyclin kinases exist in both active and inactive states Genes Dev. 8, 1750–1758.

    PubMed  CAS  Google Scholar 

  55. Weiss, R. H., Joo, A., and Randour, C. (2000) p21(Waf1/Cip1) is an assembly factor required for platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J. Biol. Chem. 275, 10285–10290.

    PubMed  CAS  Google Scholar 

  56. Adkins, J. N. and Lumb, K. J. (2000) Stoichiometry of cyclin A-cyclin-dependent kinase 2 inhibition by p21. Biochemistry 39, 13925–13930.

    PubMed  CAS  Google Scholar 

  57. Lipinski, M. M. and Jacks, T. (1999) The retinoblastoma gene family in differentiation and development. Oncogene 18, 7873–7882.

    PubMed  CAS  Google Scholar 

  58. Wazer, D. E. and Band, V. (1999) Molecular and anatomic considerations in the pathogenesis of breast cancer. Radiat. Oncol. Investig. 7, 1–12.

    PubMed  CAS  Google Scholar 

  59. Serrano, M., Gómez-Lahoz, E., DePinho, R. A., Beach, D., and Bar-Sagi, D. (1995) Inhibition of Ras-induced proliferation and cellular transformation by p16 INK4a. Science 267, 249–252.

    PubMed  CAS  Google Scholar 

  60. Serrano, M., Lee, H.-W., Chin, L., Cordon-Cardo, C., Beach, D., and DePinho, R. A. (1996) Role of the INK4a locus in tumor suppression and cell mortality Cell 85, 27–37.

    PubMed  CAS  Google Scholar 

  61. Trouche, D., Le Chalony, C., Muchardt, C., Yaniv, M., and Kouzarides, T. (1997) RB and hbrm cooperate to repress the activation functions of E2F1 Proc. Natl. Acad. Sci. USA 94, 11268–11273.

    PubMed  CAS  Google Scholar 

  62. Lukas, J., Herzinger, T., Hansen, K., et al. (1997) Cyclin E induced S phase without activation of the pRb/E2F pathway. Genes Dev. 11, 1479–1492.

    PubMed  CAS  Google Scholar 

  63. Grimison, B., Langan, A. T., and Sclafani, R. A. (2000) p16 INK4a tumor suppressor function in lung cancer cells involves cyclin dependent kinase 2 inhibition by Cip/Kip protein redistribution. Cell Growth Different. 11, 507–515.

    CAS  Google Scholar 

  64. Wang, S., Ghosh, R. N., and Chellappan, S. P. (1998) Raf-1 physically interacts with Rb and regulates its function: a link between mitogenic signaling and cell cycle regulation. Mol. Cell. Biol. 18, 7487–7498.

    PubMed  CAS  Google Scholar 

  65. Woods, D., Parry, D., Cherwinski, H., Bosch, E., Lees, E., and McMahon, M. (1997) Rafinduced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1 Mol. Cell. Biol. 17, 5598–5611.

    PubMed  CAS  Google Scholar 

  66. Lloyd, A. C., Obermuller, F., Staddon, S., Barth, C. F., McMahon, M., and Land, H. (1997) Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev. 11, 663–677.

    PubMed  CAS  Google Scholar 

  67. Auer, K. L., Seth, P., Darlington, G., et al. (1998) Prolonged activation of the mitogen activated protein (MAP) kinase pathway promotes DNA synthesis in primary hepatocytes from p21Cip-1/WAF1 knock out mice, but not in hepatocytes from p16INK4a knock out mice. Biochem. J. 336, 551–560.

    PubMed  CAS  Google Scholar 

  68. Pruitt, K., Pestell, R. G., and Der, C. J. Ras inactivation of the retinoblastoma pathway by distinct mechanisms in NIH 3T3 f ibroblast and RIE-1 epithelial cells. J. Biol. Chem. 275, 40916–40924.

    Google Scholar 

  69. Fukasawa, K. and Vande Woude, G. (1997) Synergy between the Mos/mitogen activated protein kinase pathway and loss of p53 function in transformation and chromosome instability Mol. Cell. Biol. 17, 506–518.

    PubMed  CAS  Google Scholar 

  70. Gonzalez, M., Mateos, M. V., Garcia-Sanz, R., et al. (2000) De novo methylation of tumor suppressor gene p16/INK4a is a frequent finding in multiple myeloma patients at diagnosis. Leukemia 14, 183–187.

    PubMed  CAS  Google Scholar 

  71. Miracca, E. C., Kowalski, L. P., and Nagai, M. A. (1999) High prevalence of p16 genetic alterations in head and neck tumours. Br. J. Cancer 81, 677–683.

    PubMed  CAS  Google Scholar 

  72. Tannapfel, A., Grund, D., Katalinic, A., et al. (2000) Decreased expression of p27 protein is associated with advanced tumor stage in hepatocellular carcinoma. Int. J. Cancer 89, 350–355.

    PubMed  CAS  Google Scholar 

  73. Logan, T. J., Moberg, K. H., and Hall, D. J. (1997) Multiprotein complex formation on the c-myc promoter. Biochem. Mol. Biol. Int. 43, 945–953.

    PubMed  CAS  Google Scholar 

  74. Sears, R., Leone, G., DeGregori, J., and Nevins, J. R. (1999) Ras enhances Myc protein stability. Mol. Cell 3, 169–179.

    PubMed  CAS  Google Scholar 

  75. Sears, R., Nuckolls, F., Haura, E., Taya, Y., Tamai, K., and Nevins, J. R. (2000) Multiple ras-dependent phosphorylation pathways regulate myc protein stability. Genes Dev. 14, 2501–2514.

    PubMed  CAS  Google Scholar 

  76. Noguchi, K., Kitanaka, C., Yamana, H., Kokubu, A., Mochizuki, T., and Kuchino, Y. (1999) Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J. Biol. Chem. 274, 32580–32587.

    PubMed  CAS  Google Scholar 

  77. Mitchell, K. O. and El-Deiry, W. S. (1999) Overexpression of c-Myc inhibits p21WAF1/CIP1 expression and induces S-phase entry in 12-O-tetradecanoylphorbol-13-acetate (TPA)-sensitive human cancer cells. Cell Growth Differ. 10, 223–230.

    PubMed  CAS  Google Scholar 

  78. Park, J. S., Boyer, S., Mitchell, K., et al. (2000) Expression of human papilloma virus E7 protein causes apoptosis and inhibits DNA synthesis in primary hepatocytes via increased expression of p21Cip-1/WAF1. J. Biol. Chem. 275, 18–28.

    PubMed  CAS  Google Scholar 

  79. Shaulian, E., Schreiber, M., Piu, F., Beeche, M., Wagner, E. F., and Karin, M. (2000) The mammalian UV response. c-Jun induction is required for exit from p53-imposed growth arrest. Cell 103, 897–907.

    PubMed  CAS  Google Scholar 

  80. Schreiber, M., Kolbus, A., Piu, F., et al. (1999) Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev. 13, 607–619.

    PubMed  CAS  Google Scholar 

  81. Wang, C. H., Tsao, Y. P., Chen, H. J., Chen, H. L., Wang, H. W., and Chen, S. L. (2000) Transcriptional repression of p21((Waf1/Cip1/Sdi1)) gene by c-jun through Sp1 site. Biochem. Biophys. Res. Commun. 270, 303–310.

    PubMed  CAS  Google Scholar 

  82. Kardassis, D., Papakosta, P., Pardali, K., and Moustakas, A. (1999) c-Jun transactivates the promoter of the human p21(WAF1/Cip1) gene by acting as a superactivator of the ubiquitous transcription factor Sp1. J. Biol. Chem. 274, 29572–29581.

    PubMed  CAS  Google Scholar 

  83. Passegue, E. and Wagner, E. F. (2000) JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. EMBO J. 19, 2969–2979.

    PubMed  CAS  Google Scholar 

  84. Jaiswal, R. K., Weissinger, E., Kolch, W., and Landreth, G. E. (1996) Nerve growth factor-mediated activation of the mitogen-activated protein (MAP) kinase cascade involves a signaling complex containing B-Raf and HSP90. J. Biol. Chem. 271, 23626–23629.

    PubMed  CAS  Google Scholar 

  85. Decker, S. J. (1995) Nerve growth factor-induced growth arrest and induction of p21Cip1/WAF1 in NIH-3T3 cells expressing TrkA. J. Biol. Chem. 270, 30841–30844.

    PubMed  CAS  Google Scholar 

  86. Park, J. S., Reardon, D. B., Carter, S., Fisher, P. B., Schmidt-Ullrich, R. K., and Dent, P. (1999) Mitogen activated protein (MAP) kinase pathway signaling is required for release/progression of cells through G2/M after exposure to ionizing radiation. Mol. Biol. Cell 10, 4231–4236.

    PubMed  CAS  Google Scholar 

  87. Vrana, J. A., Kramer, L. B., Saunders, A. M., et al. (1999) Inhibition of PKC activator-mediated induction of p21CIP1 and p27KIP1 by deoxycytidine analogs in human leukemia cells:relationship to apoptosis and differentiation. Biochem. Pharmacol. 58, 121–131.

    PubMed  CAS  Google Scholar 

  88. Macloed, K. F., Sherry, N., Hannon, G., et al. (1995) p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 9, 935–944.

    Google Scholar 

  89. Park, J. S., Qiao, L., Yang, M. Y., et al. (2000) A role for Ets and CCAATT (C/EBP) transcription factors in the MAPK-dependent increase in p21Cip-1/WAF1 protein levels in primary hepatocytes. Mol. Biol. Cell 11, 2915–2932.

    PubMed  CAS  Google Scholar 

  90. Hu, P. P., Shen, X., Huang, D., Liu, Y., Counter, C., and Wang, X. F. (1999) The MEK pathway is required for stimulation of p21(WAF1/CIP1) by transforming growth factor-beta. J. Biol. Chem. 274, 35381–35387.

    PubMed  CAS  Google Scholar 

  91. Michalopoulos, G. K. and DeFrances, M. C. (1997) Liver regeneration. Science 276, 60–66.

    PubMed  CAS  Google Scholar 

  92. Diehl, A. M. and Rai, R. M. (1996) Liver regeneration 3: regulation of signal transduction during liver regeneration. FASEB J. 10, 215–227.

    PubMed  CAS  Google Scholar 

  93. Loyer, P., Cariou, S., Glaise, D., Bilodeau, M., Baffet, G., and Gugen-Guillouzo, C. (1996) Growth factor dependence of progression through G1 and S phases of adult rat hepatocytes in vitro. Evidence of a mitogen restriction point in mid-late G1. J. Biol. Chem. 271, 11484–11492.

    PubMed  CAS  Google Scholar 

  94. Westwick, J. K., Fleckenstein, J., Yin, M., et al. (1996) Differential regulation of hepatocyte DNA synthesis by cAMP in vitro in vivo. Am. J. Physiol. 271, 780–790.

    Google Scholar 

  95. Talarmin, H., Rescan, C., Cariou, S., et al. (1999) The mitogen-activated protein kinase kinase/extracellular signal-regulated kinase cascade activation is a key signalling pathway involved in the regulation of G(1) phase progression in proliferating hepatocytes. Mol. Cell. Biol. 19, 6003–6011.

    PubMed  CAS  Google Scholar 

  96. Spector, M., Auer, K. L., Jarvis, D., et al. (1997) Differential regulation of the mitogen-activated protein and stress-activated protein kinase cascades by adrenergic agonists in quiescent and regenerating adult rat hepatocytes. Mol. Cell. Biol. 17, 3556–3565.

    PubMed  CAS  Google Scholar 

  97. Band, C. J., Mounier, C., and Posner, B. I. (1999) Epidermal growth factor and insulin-induced deoxyribonucleic acid synthesis in primary rat hepatocytes is phosphatidylinositol 3-kinase dependent and dissociated from protooncogene induction. Endocrinology 140, 5626–5634.

    PubMed  CAS  Google Scholar 

  98. Pu, H., Tsuji, T., Kondo, A., et al. (1997) Comparison of cellular characteristics between human hepatoma cell lines with wild-type p53 and those with mutant-type p53 gene. Acta. Med. Okayama 51, 313–319.

    PubMed  CAS  Google Scholar 

  99. Imai, Y., Oda, H., Arai, M., et al. (1996) Mutational analysis of the p53 and K-ras genes and allelotype study of the Rb-1 gene for investigating the pathogenesis of combined hepatocellular-cholangiocellular carcinomas. Jpn. J. Cancer Res. 87, 1056–1062.

    PubMed  CAS  Google Scholar 

  100. Chen, T. C., Hsieh, L. L., and Kuo, T. T. (1995) Absence of p53 gene mutation and infrequent overexpression of p53 protein in hepatoblastoma. J. Pathol. 176, 243–247.

    PubMed  CAS  Google Scholar 

  101. Teramoto, T., Satonaka, K., Kitazawa, S., Fujimori, T., Hayashi, K., and Maeda, S. (1994) p53 gene abnormalities are closely related to hepatoviral infections and occur at a late stage of hepatocarcinogenesis. Cancer Res. 54, 231–235.

    PubMed  CAS  Google Scholar 

  102. Olson, M. F., Paterson, H. F., and Marshall, C. J. (1998) Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 394, 295–299.

    PubMed  CAS  Google Scholar 

  103. Hirai, A., Nakamura, S., Noguchi, Y., et al. (1998) Newly synthesized Rho A, not Ras, is isoprenylated and translocated to membranes coincident with progression of the G1 to S phase of growth-stimulated rat FRTL-5 cells. J. Biol. Chem. 272, 13–16.

    Google Scholar 

  104. Serfas, M. S., Goufman, E., Feuerman, M., Gartel, A. L., and Tyner, A. L. (1997) p53-independent induction of p21WAF1/CIP1 expression in pericentral hepatocytes following carbon tetrachloride intoxication. Cell Growth Different. 8, 951–961.

    CAS  Google Scholar 

  105. Albrecht, J. H., Meyer, A. H., and Hu, M. Y. (1997) Regulation of cyclin-dependent kinase inhibitor p21(WAF1/Cip1/Sdi1) gene expression in hepatic regeneration. Hepatology 25, 557–563.

    PubMed  CAS  Google Scholar 

  106. Wu, H., Wade, M., Krall, L., Grisham, J., Xiong, Y., and Van Dyke, T. (1996) Targeted in vivo expression of the cyclin-dependent kinase inhibitor p21 halts hepatocyte cell-cycle progression, postnatal liver development and regeneration. Genes Dev. 10, 245–260.

    PubMed  CAS  Google Scholar 

  107. Timchenko, N. A., Harris, T. E., Wilde, M., et al. (1997) CCAAT/enhancer binding protein alpha regulates p21 protein and hepatocyte proliferation in newborn mice. Mol. Biol. Cell 17, 7353–7361.

    CAS  Google Scholar 

  108. Cristiano, R. J., Smith, L. C., Kay, M. A., Brinkley, B. R., and Woo, S. L. (1993) Hepatic gene therapy: efficient gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus-DNA complex. Proc. Natl. Acad. Sci. USA 90, 11548–11552.

    PubMed  CAS  Google Scholar 

  109. Cristiano, R. J., Smith, L. C., and Woo, S. L. (1993) Hepatic gene therapy: adenovirus enhancement of receptor-mediated gene delivery and expression in primary hepatocytes. Proc. Natl. Acad. Sci. USA 90, 2122–2126.

    PubMed  CAS  Google Scholar 

  110. Auer, K. L., Spector, M., Tombes, R. M., et al. (1998) Alpha-adrenergic inhibition of proliferation in HepG2 cells stably transfected with the alpha1B-adrenergic receptor through a p42MAPkinase/p21Cip1/WAF1-dependent pathway. FEBS Lett. 436, 131–138.

    PubMed  CAS  Google Scholar 

  111. Groth, A., Weber, J. D., Willumsen, B. M., Sherr, C. J., and Roussel, M. F. (2000) Oncogenic Ras induces p19ARF and growth arrest in mouse embryo fibroblasts lacking p21Cip1 and p27Kip1 without activating cyclin D-dependent kinases. J. Biol. Chem. 275, 27473–27480.

    PubMed  CAS  Google Scholar 

  112. Qiao, L., Leach, K., McKinstry, R., et al. (2001) Hepatitis B virus X protein increases expression of p21(Cip-1/WAF1/MDAG) and p27(Kip-1) in primary mouse hepatocytes, leading to reduced cell progression. Hepatology 34, 906–917.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Dent, P., Qiao, L., Gilfor, D., Birrer, M., Grant, S., Fisher, P.B. (2003). The Regulation of Tumor Suppressor Genes by Oncogenes. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 222. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-328-3:269

Download citation

  • DOI: https://doi.org/10.1385/1-59259-328-3:269

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-986-5

  • Online ISBN: 978-1-59259-328-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics