Skip to main content

Progression Model of Prostate Cancer

  • Protocol
Book cover Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 222))

  • 949 Accesses

Abstract

Prostate cancer is the most common form of cancer diagnosed in men (other than skin cancer). In 1999, in the United States alone there were approximately 179,300 new cases and 37,000 deaths due to prostate cancer (1). In 1999, the prostate cancers diagnosed accounted for 29% of cancers in men and 14.7% of all cancers (other than skin) in both sexes, making it the most diagnosed cancer in the total population. In the prostate, the formation of histologically identifiable neoplastic lesions is a very frequent event, occurring in nearly one-third of the male population over 45 years of age (2). Fortunately, it has been estimated that only a small percentage of these men will actually die from prostate cancer (36). There is evidence to support environmental (including cell-cell interactions), epigenetic, and other factors playing a role in prostate tumorigenesis (717). However, that cancer in general is a genetic disease is currently the most widely accepted model of tumor etiology (18,19). A number of genetic changes have been documented in prostate cancer. Consistently, allelic losses of specific chromosomes are observed in prostate tumors, but this is not true for mutations on specific genes (2022). Prostate cancers require many years to develop. It is believed that during these years they accumulate a number of genetic alterations. However, the molecular events that underlie the development of prostate neoplasia are not well defined (22). Thus, it has been difficult to establish a genetic model for the progression of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landis, S. H., Murray, T., Bolden, S., and Wingo, P. A. (1999) Cancer statistics. CA Cancer J. C lin. 49, 8–31.

    Article  CAS  Google Scholar 

  2. Dhom, G. (1983) Epidemiologic aspects of latent and clinically manifest carcinoma of the prostate. J. Cancer Res. Clin. Oncol. 106(3), 210–218.

    Article  PubMed  CAS  Google Scholar 

  3. Stamey, T. (1983) Cancer of the prostate. Monogr. Urol. 4, 1–21.

    Google Scholar 

  4. Sakr, W. A., Haas, G. P., Cassin, B., Pontes, J. E., and Crissman, J. (1993) The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J. Urol. 150(2 Pt 1), 379–385.

    PubMed  CAS  Google Scholar 

  5. Franks, L. (1954) Latent carcinoma of the prostate. J. Clin. Pathol. 68, 603–616.

    CAS  Google Scholar 

  6. Andrews, G. (1954) Latent carcinoma of the prostate. J. Clin. Pathol. 2, 197–208.

    Article  Google Scholar 

  7. Olumi, A. F., Grossfeld, G. D., Hayward, S. W., Carroll, P. R., Tlsty, T. D., and Cunha, G. R. (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59(19), 5002–5011.

    PubMed  CAS  Google Scholar 

  8. Hedlund, T. E., Duke, R. C., and Miller, G. J. (1999) Three-dimensional spheroid cultures of human prostate cancer cell lines. Prostate 41(3), 154–165.

    Article  PubMed  CAS  Google Scholar 

  9. Miller, G. J. (1998) Vitamin D and prostate cancer: biologic interactions and clinical potentials. Cancer Metastasis Rev. 17(4), 353–360.

    Article  PubMed  CAS  Google Scholar 

  10. Olumi, A. F., Dazin, P., and Tlsty, T. D. (1998) A novel coculture technique demonstrates that normal human prostatic fibroblasts contribute to tumor formation of LNCaP cells by retarding cell death. Cancer Res. 58(20), 4525–4530.

    PubMed  CAS  Google Scholar 

  11. Hayward S. W., Grossfeld, G. D., Tlsty, T. D., and Cunha, G. R. (1998) Genetic and epigenetic influences in prostatic carcinogenesis (review). Int. J. Oncol. 13(1), 35–47.

    PubMed  CAS  Google Scholar 

  12. Cerhan, J. R., Torner, J. C., Lynch, C. F., et al. (1997) Association of smoking, body mass, and physical activity with risk of prostate cancer in the Iowa 65+ Rural Health Study (United States). Cancer Causes Control 8(2), 229–238.

    Article  PubMed  CAS  Google Scholar 

  13. Konishi, N, Hiasa, Y., Tsuzuki, T., et al. (1997) Comparison of ras activation in prostate carcinoma in Japanese and American men. Prostate 30(1) 53–57.

    Article  PubMed  CAS  Google Scholar 

  14. Blair, A. and Fraumeni, J. F. (1978) Geographic patterns of prostate cancer in the United States. J. Natl. Cancer Inst. 61(6), 1379–1384.

    PubMed  CAS  Google Scholar 

  15. Peto, R., Doll, R., Buckley, J. D., and Sporn, M. B. (1981) Can dietary beta-carotene materially reduce human cancer rates? Nature 290, 201–208.

    Article  PubMed  CAS  Google Scholar 

  16. Rooney, C., Beral, V., Maconochie, N., Fraser, P., and Davies, G. (1993) Case-control study of prostatic cancer in employees of the United Kingdom Atomic Energy Authority [see comments]. Br. Med. J. 307, 1391–1397.

    Article  CAS  Google Scholar 

  17. Gu, F. L., Xia, T. L., and Kong, X. T. (1994) Preliminary study of the frequency of benign prostatic hyperplasia and prostatic cancer in China. Urology 44, 688–691.

    Article  PubMed  CAS  Google Scholar 

  18. Bishop, J. M. (1995) Cancer: the rise of the genetic paradigm. Genes Dev. 9(11), 1309–1315.

    Article  PubMed  CAS  Google Scholar 

  19. Vogelstein, B. and Kinzler, K. W. (1997) Preface, in: The Genetic Basis of Human Cancer. Vogelstein, B. and Kinzler, K. W., eds. McGraw Hill. New York, p. xv.

    Google Scholar 

  20. Isaacs, W. (1996) Molecular Genetics of Prostate cancer, in Comprehensive Textbook of Genitourinary Oncology. Vogelzang, Scardino, Shipley, and Coffey, eds., Williams & Wilkins, Baltimore, 579–592.

    Google Scholar 

  21. Bova, G. S. and Isaacs, W. B. (1996) Review of allelic loss and gain in prostate cancer. World of Urol. 14, 338–346.

    CAS  Google Scholar 

  22. Verma, R S., Manikal, M., Conte, R. A., and Godec, C. J. (1999) Chromosomal basis of adenocarcinoma of the prostate. Cancer Invest. 17(6), 441–447.

    Article  PubMed  CAS  Google Scholar 

  23. Fearon, E. R. and Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis. Cell 61, 759–767.

    Article  PubMed  CAS  Google Scholar 

  24. Isaacs, W. and Bova, S. (1997) Prostate cancer, in: The Genetic Basis of Human Cancer. Vogelstein, B., and Kingler, K. W., eds., McGraw Hill, New York, pp. 653–660.

    Google Scholar 

  25. Bostwick, D. G., Pcelli, A., and Lopez-Beltran, A. (1996) Molecular biology of prostatic intraepithelial neoplasia. Prostate 29, 117–134.

    Article  PubMed  CAS  Google Scholar 

  26. Bostwick, D. G. (1992) Prostatic intraepithelial neoplasia (PIN): current concepts. J. Cell Biochem. Suppl. 10, 9.

    Article  Google Scholar 

  27. Grayhac, J. T., Keeler, T. C, and Kozlowski, J. M. (1987) Carcinoma of the prostate. Hormonal therapy. Cancer 60(3 Suppl), 589–601.

    Article  Google Scholar 

  28. Montie, J. E. (1995) Staging of prostate cancer. Cancer 74(1), 1–3

    Article  Google Scholar 

  29. Gleason, D F. (1992) Histological grading of prostate cancer: perspective. Hum. Pathol. 23, 273–279.

    Article  PubMed  CAS  Google Scholar 

  30. Villers, A., McNeal, J. E., Freiha, F. S., and Stamey, T. A. (1992) Multiple cancers in the prostate. Morphologic features of clinically recognized versus incidental tumors. Cancer 9, 2313–2318.

    Article  Google Scholar 

  31. Byar, D. P. and Mostofi, F. K. (1972) Carcinoma of the prostate: prognostic evaluation of certain pathologic features in 208 radical prostatectomies. Cancer 30, 5–13.

    Article  PubMed  CAS  Google Scholar 

  32. Bostwick, D. G., Shan, A., Qian, J., et al. (1998) Independent origin of multiple foci of prostatic intraepithelial neoplasia: comparison with matched foci of prostate carcinoma. Cancer 83, 1995–2002.

    Article  PubMed  CAS  Google Scholar 

  33. Macintosh, C. A., Stower, M., Reid, N., and Maitland, N. J. (1998) Precise microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Res. 58, 23–28.

    PubMed  CAS  Google Scholar 

  34. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., et al. (1996) Laser capture microdissection. Science 274, 998–1001.

    Article  PubMed  CAS  Google Scholar 

  35. Liu, A. Y., True, L. D., LaTray, L., et al. (1997) Cell-cell interaction in prostate gene regulation and cytodifferentiation. Proc. Natl. Acad. Sci. USA 94, 10705–10710.

    Article  PubMed  CAS  Google Scholar 

  36. Liu, A. Y., Corey, E., Vessella, R. L., et al. (1997) Identification of differentially expressed prostate genes: increased expression of transcription factor ETS-2 in prostate cancer. Prostate 30, 145–153.

    Article  PubMed  CAS  Google Scholar 

  37. Bright, R. K., Vocke, C. D., Emmert-Buck, M. R., et al. (1997) Generation and genetic characterization of immortal human prostate epithelial cell lines derived from primary cancer specimens. Cancer Res. 57, 995–1002.

    PubMed  CAS  Google Scholar 

  38. Navone, N. M., Logothetis, C. J., von Eschenbach, A. C., and Troncoso, P. (1999) Model systems of prostate cancer: uses and limitations. Cancer Metastasis Rev. 17, 361–371.

    Article  CAS  Google Scholar 

  39. Isaacs, J. T. and Coffey, D. S. (1989) Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl. 2, 33–50.

    Article  PubMed  CAS  Google Scholar 

  40. Berges, R. R., Vukanovic, J., Epstein, J. I., et al. (1995) Implication of cell kinetic changes during the progression of human prostatic cancer. Clin. Cancer Res. 1, 473–480.

    PubMed  CAS  Google Scholar 

  41. Klein, K. A., Reiter, R. E., Redula, J., et al. (1997) Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat. Med. 3, 402–408.

    Article  PubMed  CAS  Google Scholar 

  42. Whang, Y. E., Wu, X., Suzuki, H., et al. (1998) Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc. Natl. Acad. Sci. USA 95, 5246–5250.

    Article  PubMed  CAS  Google Scholar 

  43. Dong, J. T., Sipe, T. W., Hyytinen, E. R., et al. (1998) PTEN/MMAC1 is infrequently mutated in pT2 and pT3 carcinomas of the prostate. Oncogene 17, 1979–1982.

    Article  PubMed  CAS  Google Scholar 

  44. Li, J., Yen, C., Liaw, D., et al. (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer [see comments]. Science 275(5308), 1943–1947.

    Article  PubMed  CAS  Google Scholar 

  45. Takimoto, Y., Shimazui, T., Akaza, H., Sato, N., and Noguchi, M. (2001) Genetic heterogeneity of surgically resected prostate carcinomas and their biopsy specimens is related to their histologic differentiation. Cancer 91, 362–370.

    Article  PubMed  CAS  Google Scholar 

  46. Alers, J. C., Rochat, J., Krijtenburg, P. J., et al. (2000) Identification of genetic markers for prostatic cancer progression. Lab. Invest. 80, 931–942.

    Article  PubMed  CAS  Google Scholar 

  47. Fu, W., Bubendorf, L., Willi, N., et al. (2000) Genetic changes in clinically organ-confined prostate cancer by comparative genomic hybridization. Urology 56, 880–885.

    Article  PubMed  CAS  Google Scholar 

  48. Zitzelsberger, H., Engert, D., Walch, A., et al. (2001) Chromosomal changes during development and progression of prostate adenocarcinomas. Br. J. Cancer 84, 202–208.

    Article  PubMed  CAS  Google Scholar 

  49. Saric, T., Brkanac, Z., Troyer, D. A., et al. (1999) Genetic pattern of prostate cancer progression. Int. J. Cancer 81, 219–224.

    Article  PubMed  CAS  Google Scholar 

  50. Emmert-Buck, M. R., Vocke, C. D., Pozzatti, R. O., et al. (1995) Allelic loss on chromosome 8p12-21 in microdissected prostatic intraepithelial neoplasia. Cancer Res. 55, 2959–2962.

    PubMed  CAS  Google Scholar 

  51. Latil, A., Cussenot, O., Fournier, G., Baron, J. C., and Lidereau, R. (1995) Loss of heterozygosity at 7q31 is a frequent and early event in prostate cancer. Clin. Cancer Res. 1, 1385–1389.

    PubMed  CAS  Google Scholar 

  52. Qian, J., Jenkins, R. B., and Bostwick, D. G. (1999) Genetic and chromosomal alterations in prostatic intraepithelial neoplasia and carcinoma detected by fluorescence in situ hybridization. Eur. Urol. 35, 479–483.

    Article  PubMed  CAS  Google Scholar 

  53. Padalecki, S. S., Troyer, D. A., Hansen, M. F., et al. (2000) Identification of two distinct regions of allelic imbalance on chromosome 18Q in metastatic prostate cancer. Int. J. Cancer 85, 654–658.

    Article  PubMed  CAS  Google Scholar 

  54. Strup, S. E., Pozzatti, R. O., Florence, C. D., et al. (1999) Chromosome 16 allelic loss analysis of a large set of microdissected prostate carcinomas. J. Urol. 162, 590–594.

    Article  PubMed  CAS  Google Scholar 

  55. Sakr, W. A., Macoska, J. A., Benson, P., et al. (1994) Allelic loss in locally metastatic, multisampled prostate cancer. Cancer Res. 54, 3273–3277.

    PubMed  CAS  Google Scholar 

  56. Rubin, M. A., Gerstein, A., Reid K., et al. (2000) 10q23.3 loss of heterozygosity is higher in lymph node-positive (pT2-3,N+) versus lymph node-negative (pT2-3,N0) prostate cancer. Hum. Pathol. 31, 540–508.

    Google Scholar 

  57. Visakorpi, T., Kallioniemi, O. P., Heikkinen, A., Koivula, T., and Isola, J. (1992) Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J. Natl. Cancer Inst. 84, 883–887.

    Article  PubMed  CAS  Google Scholar 

  58. Nupponen, N. N., Kakkola, L., Koivisto, P., Visakorpi, T. (1998) Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am. J. Path. 153, 141–148.

    Article  PubMed  CAS  Google Scholar 

  59. Sanberg, A. (1992) Chromosomal abnormalities and related events in prostate cancer. Hum. Path. 23, 368–380.

    Article  Google Scholar 

  60. Abate-Shen, C., Shen, M. M. (2000) Molecular genetics of prostate cancer. Genes Dev. 14, 2410–2434.

    Article  PubMed  CAS  Google Scholar 

  61. Yin, Z., Spitz, M. R., Babaian, R. J., Strom, S. S., Troncoso, P., and Kagan, J. (1999) Limiting the location of a putative human prostate cancer tumor suppressor gene at chromosome 13q14.3. Oncogene 18:7576–7583.

    Article  PubMed  CAS  Google Scholar 

  62. Afonso, A., Emmert-Buck, M. R., Duray, P. H., Bostwick, D. G., Linehan, W. M., and Vocke C. D. (1999) Loss of heterozygosity on chromosome 13 is associated with advanced stage prostate cancer [see comments]. J Urol. 162(3 Pt 1), 922–926.

    Article  PubMed  CAS  Google Scholar 

  63. Ueda, T., Emi, M., Suzuki, H., et al. (1999) Identification of a I-cM region of common deletion on 13q14 associated with human prostate cancer. Genes Chromosomes Cancer 24(3), 183–190.

    Article  PubMed  CAS  Google Scholar 

  64. Hyytinen, E. R., Frierson, H. F., Jr., Sipe, T. W., et al. (1999) Loss of heterozygosity and lack of mutations of the XPG/ERCC5 DNA repair gene at 13q33 in prostate cancer. Prostate 41(3), 190–195.

    Article  PubMed  CAS  Google Scholar 

  65. Wang, J. C., Radford D. M., Holt, M. S., et al. (1999) Sequence-ready contig for the 1.4-cM ductal carcinoma in situ loss of heterozygosity region on chromosome 8p22-p23. Genomics 60(1), 1–11.

    Article  PubMed  CAS  Google Scholar 

  66. Prasad M. A., Trybus, T. M., Wojno, K. J., and Macoska, J. A. (1998) Homozygous and frequent deletion of proximal 8p sequences in human prostate cancers: identification of a potential tumor suppressor gene site. Genes Chromosomes Cancer 23(3), 255–262.

    Article  PubMed  Google Scholar 

  67. Haggman, M. J., Wojno, K. J., Pearsall, C. P., and Macoska, J. A. (1997) Allelic loss of 8p sequences in prostatic intraepithelial neoplasia and carcinoma. Urology 50(4), 643–647.

    Article  PubMed  CAS  Google Scholar 

  68. Bova, G. S., Mac Grovan, D., Levy, A., Pin, S. S., Bookstein, R., and Isaacs, W B. (1996) Physical mapping of chromosome 8p22 markers and their homozygous deletion in a metastatic prostate cancer. Genomics 35, 46–54.

    Google Scholar 

  69. Bandyk, M. G., Zhao, L., Troncoso, P., et al. (1994) Trisomy 7: a potential cytogenetic marker of human prostate cancer progression. Genes Chromosomes Cancer 9(1), 19–27.

    Article  PubMed  CAS  Google Scholar 

  70. Zenklusen, J. C., Thompson, J. C., Troncoso, P., Kagan, J., and Conti, C. J. (1994) Loss of heterozygosity in human primary prostate carcinomas: a possible tumor suppressor gene at 7q31.1. Cancer Res. 54(24), 6370–6373.

    PubMed  CAS  Google Scholar 

  71. Takahashi, S., Shan, A. L., Ritland S. R., et al. (1995) Frequent loss of heterozygosity at 7q31.1 in primary prostate cancer is associated with tumor aggressiveness and progression. Cancer Res. 55(18), 4114–4119.

    PubMed  CAS  Google Scholar 

  72. Carter, B. S., Ewing, C. M., Ward, W. S., et al. (1996) Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc. Natl. Acad. Sci. USA 87(22), 8751–8755.

    Article  Google Scholar 

  73. Ittmann, M. (1996) Allelic loss on chromosome 10 in prostate adenocarcinoma. Cancer Res. 56(9), 2143–2147.

    PubMed  CAS  Google Scholar 

  74. Gray, I. C., Phillips, S. M., Lee, S. J., Neoptolemos, J. P., Weissenbach, J., and Spurr, N. K. (1995) Loss of the chromosomal region 10q23-25 in prostate cancer. Cancer Res, 55(21), 4800–4803.

    PubMed  CAS  Google Scholar 

  75. Bergerheim, U. S., Kunimi, K., Collins, V. P., and Ekman, P. (1991) Deletion mapping of chromosomes 8, 10, and 16 in human prostatic carcinoma. Genes Chromosomes Cancer 3(3), 215–220.

    Article  PubMed  CAS  Google Scholar 

  76. Li, C., Berx, G., Larsson, C., et al. (1999) Distinct deleted regions on chromosome segment 16q23-24 associated with metastases in prostate cancer. Genes Chromosomes Cancer 24(3), 175–182.

    Article  PubMed  CAS  Google Scholar 

  77. Brothman, A. R., Steele, M. R., Williams, B. J., et al. (1995) Loss of chromosome 17 loci in prostate cancer detected by polymerase chain reaction quantitation of allelic markers. Genes Chromosomes Cancer 13(4), 278–284.

    Article  PubMed  CAS  Google Scholar 

  78. Williams, B. J., Jones, E., Zhu, X. L., et al. (1996) Evidence for a tumor suppressor gene distal to BRCA1 in prostate cancer. J. Urol. 155(2), 720–725.

    Article  PubMed  CAS  Google Scholar 

  79. Latil, A., Baron, J. C., Cussenot, O., et al. (1994) Genetic alterations in localized prostate cancer: identification of a common region of deletion on chromosome arm 18q. Genes Chromosomes Cancer 11(2), 119–125.

    Article  PubMed  CAS  Google Scholar 

  80. Cunningham, J. M., Shan, A., Wick, M. J., et al. (1996) Allelic imbalance and microsatellite instability in prostatic adenocarcinoma. Cancer Res. 56(19), 4475–4482.

    PubMed  CAS  Google Scholar 

  81. Yin Z., Babaian, R. J., Troncoso, P., et al. (2001) Limiting the location of putative prostate cancer tumor suppressor genes on chromosome 18q. Oncogene 26, 2273–2280.

    Article  CAS  Google Scholar 

  82. Bhatia-Gaur, R., Donjacour, A. A., Sciavolino, P. J., et al. (1999) Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 13, 966–977.

    Article  PubMed  CAS  Google Scholar 

  83. He, W. W., Sciavolino, P. J., Wing, J., et al. (1997) A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43, 69–77.

    Article  PubMed  CAS  Google Scholar 

  84. Voeller, H. J., Augustus, M., Madike, V., Bova, G. S., Carter, K. C., and Gelmann, E. P. (1997) Coding region of NKX3.1, a prostate-specific homeobox gene on 8p21, is not mutated in human prostate cancers. Cancer Res. 57, 4455–4459.

    PubMed  CAS  Google Scholar 

  85. Prochownik, E. V., Eagle Grove, L., Deubler, D., et al. (1998) Commonly occurring loss and mutation of the MXI1 gene in prostate cancer. Genes Chromosomes Cancer 22(4), 295–304.

    Article  PubMed  CAS  Google Scholar 

  86. Srivastava, M., Bubendorf, L., Srikantan, V., et al. (2001) ANX7, a candidate tumor suppressor gene for prostate cancer. PNAS 98, 4575–4580.

    Article  PubMed  CAS  Google Scholar 

  87. Kubota, Y., Fujinami, K., Uemura, H., et al. (1995) Retinoblastoma gene mutations in primary human prostate cancer. Prostate 27(6), 314–320.

    Article  PubMed  CAS  Google Scholar 

  88. Roy-Burman, P., Zheng, J., and Miller, G. J. (1997) Molecular heterogeneity in prostate cancer: can TP53 mutation unravel tumorigenesis? Mol. Med. Today 3(11), 476–482.

    Article  PubMed  CAS  Google Scholar 

  89. Salem, C. E., Tomasic, N. A., Elmajian, D. A., et al. (1997) p53 protein and gene alterations in pathological stage C prostate carcinoma [see comments]. J. Urol. 158(2), 510–514.

    Article  PubMed  CAS  Google Scholar 

  90. Pesche, S., Latil, A., Muzeau, F., et al. (1998) PTEN/MMAC1/TEP1 involvement in primary prostate cancers. Oncogene 16(22), 2879–2883.

    Article  PubMed  CAS  Google Scholar 

  91. Cairns, P., Okami, K., Halachmi, S., et al. (1997) Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 57(22), 4997–5000.

    PubMed  CAS  Google Scholar 

  92. Wallen, M. J., Linja, M., Kaartinen, K., Schleutker, J., and Visakorpi, T. (1999) Androgen receptor gene mutations in hormone-refractory prostate cancer [In Process Citation]. J. Pathol. 189(4): 559–563.

    Article  PubMed  CAS  Google Scholar 

  93. Taplin, M. E., Bubley, G. J., Shuster, T. D., et al. (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer [see comments]. N. Engl. J. Med. 332(21), 1393–1398.

    Article  PubMed  CAS  Google Scholar 

  94. Gaddipati, J. P., McLeod, D. G., Sesterhenn, I. A., et al. (1997) Mutations of the p16 gene product are rare in prostate cancer. Prostate 30(3), 188–194.

    Article  PubMed  CAS  Google Scholar 

  95. Zhao, X. Y., Malloy, P. J., Krishnan, A. V., et al. (2000) Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat. Med. 6, 703–706.

    Article  PubMed  CAS  Google Scholar 

  96. Brinkmann, A. O., Trapman, J. (2000) Prostate cancer schemes for androgen escape. Nat. Med. 6, 628–629.

    Article  PubMed  CAS  Google Scholar 

  97. Morrissey, C., Bennett, S., Nitsche, E., Guenette, R. S., Wong, P., and Tenniswood, M. (1999) Expression of p190A during apoptosis in the regressing rat ventral prostate. Endocrinology 140(7), 3328–3333.

    Article  PubMed  CAS  Google Scholar 

  98. Qiu, G., Ahmed, M., Sells, S. F., Mohiuddin, M., Weinstein, M. H., Rangnekar, V. M. (1999) Mutually exclusive expression patterns of Bcl-2 and Par-4 in human prostate tumors consistent with down-regulation of Bcl-2 by Par-4. Oncogene 18(3), p623–631.

    Article  CAS  Google Scholar 

  99. Tenniswood, M. (1997) Apoptosis, tumour invasion and prostate cancer. Br. J. Urol. 79Suppl 2, 27–34.

    PubMed  Google Scholar 

  100. Cohen, M. B., Griebling, T. L., Ahaghotu, C. A., Rokhlin, O. W., and Ross, J. S. (1997) Cellular adhesion molecules in urologic malignancies. Am. J. Clin. Pathol. 107(1), 56–63.

    PubMed  CAS  Google Scholar 

  101. Rokhlin, O. W. and Cohen, M. B. (1995) Expression of cellular adhesion molecules on human prostate tumor cell lines. Prostate 26(4), 205–212.

    Article  PubMed  CAS  Google Scholar 

  102. Tlsty, T. D. (1998) Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Curr. Opin. Cell Biol. 10(5), 647–653.

    Article  PubMed  CAS  Google Scholar 

  103. McDonnell, T. J., Troncoso, P., Brisbay, S. M., et al. (1992) Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 52(24), 6940–6944.

    PubMed  CAS  Google Scholar 

  104. Umbas, R., Isaacs, W. B., Bringuier, P. P., et al. (1994) Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res 54(14), 3929–3933.

    PubMed  CAS  Google Scholar 

  105. Dong, J. T., Lamb, P. W., Rinker-Schaeffer, C. W., et al. (1995) KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268, 884–886.

    Article  PubMed  CAS  Google Scholar 

  106. Dong, J. T., Suzuki, H., Pin, S. S., et al. (1996) Down-regulation of the KAI1 metastasis suppressor gene during the progression of human prostatic cancer infrequently involves gene mutation or allelic loss. Cancer Res. 56, 4387–4390.

    PubMed  CAS  Google Scholar 

  107. Zenklusen, J. C., Conti, C. J., and Green, E. D. (2001) Mutational and functional analyses reveal that ST7 is a highly conserved tumor-suppressor gene on human chromosome 7q31. Nat. Genet. 27, 392–398.

    Article  PubMed  CAS  Google Scholar 

  108. Leach, F. S., Tokino, T., Meltzer, P., et al. (1998) p53 Mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res. 53(10 Suppl), 2231–2234.

    Google Scholar 

  109. Voeller, H. J., Truica, C. I., and Gelmann, E. P. (1998) Beta-catenin mutations in human prostate cancer. Cancer Res. 58(12), 2520–2523.

    PubMed  CAS  Google Scholar 

  110. Gerstein, A. V., Almeida, T. A., Zhao, G., et al. (2002) APC/CTNNB1 (b-catenin) pathway alterations in human prostate cancer. Gene. Chromosome. Canc. 34, 9–10.

    Article  CAS  Google Scholar 

  111. Ostrander, E. A. and Stanford, J. L. (2000) Genetics of prostate cancer: Too many loci, too few genes. Am. J. Hum. Genet. 67, 1367–1375.

    Article  PubMed  CAS  Google Scholar 

  112. Tavtigian, S. V., Simard, J., Teng, D. H., et al. (2001) A candidate prostate cancer susceptibility gene at chromosome 17p. Nat. Genet. 27, 172–180.

    Article  PubMed  CAS  Google Scholar 

  113. Vesprini, D., Nam, R. K., Trachtenberg, J., et al. (2001) HPC2 variants and screen-detected prostate cancer. Am. J. Hum. Genet. 68, 912–917.

    Article  PubMed  CAS  Google Scholar 

  114. Xu, J., Zheng, S. L., Carpten, J. D., et al. (2001) Evaluation of linkage and association of HPC2/ELAC2 in patients with familial or sporadic prostate cancer. Am. J. Hum. Genet. 68, 901–911.

    Article  PubMed  CAS  Google Scholar 

  115. Rokman, A., Koivisto, P. A., Matikainen, M. P., et al. (2001) Genetic changes in familial prostate cancer by comparative genomic hybridization. Prostate 46, 233–239.

    Article  PubMed  CAS  Google Scholar 

  116. Hughes, J. H. and Cohen, M. B. (1998) Nuclear matrix proteins and their potential applications to diagnostic pathology. Am. J. Clin. Pathol. 111: 267–274.

    Google Scholar 

  117. Ruijter, E. T., Werahera, P. N., van de Kaa, C. A., Stewart, J. S., Schalken, J. A., and Miller, G. J. (1998) Detection of abnormal E-cadherin expression by stimulated prostate biopsy. J. Urology 160, 1368.

    Article  CAS  Google Scholar 

  118. Jen, J., Kim, H., Piantadosi, S., et al. (1994) Allelic loss of chromosome 18q and prognosis in colorectal cancer [see comments]. N. Engl. J. Med. 331(4), 213–221.

    Article  PubMed  CAS  Google Scholar 

  119. Jenkins, R., Takahashi, S., DeLacey, K., Bergstralh, E., and Lieber, M. (1998) Prognostic significance of allelic imbalance of chromosome arms 7q, 8p, 16q, and 18q in stage T3N0M0 prostate cancer. Genes Chromosomes Cancer 21(2), 131–143.

    Article  PubMed  CAS  Google Scholar 

  120. Sato, K., Qian, J., Slezak, J. M., et al. (1999) Clinical significance of alterations of chromosome 8 in high-grade, advanced, nonmetastatic prostate carcinoma. J. Natl. Cancer Inst. 91(18), 1574–1580.

    Article  PubMed  CAS  Google Scholar 

  121. Partin, A. W., Yoo, J., Carter, H. B., et al. (1993) The use of prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with localized prostate cancer [see comments]. J. Urol. 150(1), 110–114.

    PubMed  CAS  Google Scholar 

  122. Sgrignoli, A. R., Walsh, P. C., Steinberg, G. D., Steiner, M. S., and Epstein, J. I. (1994) Prognostic factors in men with stage D1 prostate cancer: identification of patients less likely to have prolonged survival after radical prostatectomy [see comments]. J. Urol. 152(4), 1077–1081.

    PubMed  CAS  Google Scholar 

  123. Zincke, H., Oesterling, J. E., Blute, M. L., Bergstralh, E. J., Myers, R. P., and Barrett, D. M. (1994) Long-term (15 years) results after radical prostatectomy for clinically localized (stage T2c or lower) prostate cancer [see comments]. J. Urol. 152(5 Pt 2), 1850–1857.

    PubMed  CAS  Google Scholar 

  124. Scardino, P. T., Weaver, R., and Hudson, M. A. (1992) Early detection of prostate cancer. Hum. Pathol. 23(3), 211–222.

    Article  PubMed  CAS  Google Scholar 

  125. Isaacs, J. T. (1997) Molecular markers for prostate cancer metastasis. Developing diagnostic methods for predicting the aggressiveness of prostate cancer. Am. J. Pathol. 150(5), 1511–1521.

    PubMed  CAS  Google Scholar 

  126. Menon, M. (1997) Predicting biological aggressiveness in prostate cancer—desperately seeking a marker [editorial; comment]. J Urol. 157(1), 228–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Almeida, T.A., Papadopoulos, N. (2003). Progression Model of Prostate Cancer. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 222. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-328-3:211

Download citation

  • DOI: https://doi.org/10.1385/1-59259-328-3:211

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-986-5

  • Online ISBN: 978-1-59259-328-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics