Skip to main content

Hereditary Colon Cancer Genes

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 222))

  • 979 Accesses

Abstract

Colorectal cancer develops as the result of the progressive accumulation of genetic and epigenetic alterations that lead to the transformation of normal colonic epithelium to colon adenocarcinoma. The fact that colon cancer develops over 10–15 years and progresses through parallel histologic and molecular changes has permitted the study of its molecular pathology in more detail than other cancer types. Consequently, the specific nature of many of these cancer-associated genetic alterations has been determined over the last 15 years. The subsequent effect of these alterations on the cell and molecular biology of the cancer cells in which they occur has also begun to be revealed over the last decade. From the analysis of the molecular genesis of colon cancer, three key themes concerning the molecular pathogenesis of cancer have been established. The first is that cancer emerges via a multistep progression at both the molecular and the morphologic levels (1). The second is that loss of genomic stability is a key molecular and pathophysiologic step in cancer formation (2). The third is that hereditary cancer syndromes frequently correspond to germline forms of key genetic defects whose somatic occurrences drive the emergence of sporadic colon cancers (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fearon, E. and Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis. Cell 61, 759–767.

    Article  PubMed  CAS  Google Scholar 

  2. Lengauer, C., Kinzler, K., and Vogelstein, B. (1998) Genetic instabilities in human cancers. Nature 396, 643–649.

    Article  PubMed  CAS  Google Scholar 

  3. Kinzler, K. and Vogelstein, B. (1996) Lessons from hereditary colorectal cancer. Cell 87, 159–170.

    Article  PubMed  CAS  Google Scholar 

  4. Aaltonen, L., Peltomaki, P., Mecklin, J.-P., et al. (1994) Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 54, 1645–1648.

    PubMed  CAS  Google Scholar 

  5. Grady, W., Rajput, A., Myeroff, L., et al. (1998) Mutation of the type II transforming growth factor-b receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res. 58, 3101–3104.

    PubMed  CAS  Google Scholar 

  6. Jacoby, R., Marshall, D., Kailas, S., Schlack, S., Harms, B., and Love, R. (1995) Genetic instability associated with adenoma to carcinoma progression in hereditary nonpolyposis colon cancer. Gastroenterology 109, 73–82.

    Article  PubMed  CAS  Google Scholar 

  7. Bomme, L., Bardi, G., Pandis, N., Fenger, C., Kronborg, O., and Heim, S. (1998) Cytogenetic analysis of colorectal adenomas: karyotypic comparisons of synchronous tumors. Cancer Genet. Cytogene. 106, 66–71.

    Article  CAS  Google Scholar 

  8. Ried, T., Heselmeyer-Haddad, K., Blegen, H., Schrock, E., and Auer, G. (1999) Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors: a phenotype/genotype correlation. Genes Chromosomes Cancer 25, 195–204.

    Article  PubMed  CAS  Google Scholar 

  9. Rooney, P., Murray, G., Stevenson, D., Haites, N., Cassidy, J., and McLeod, H. (1999) Comparative genomic hybridization and chromosomal instability in solid tumors. Br. J. Cancer 80, 862–873.

    Article  PubMed  CAS  Google Scholar 

  10. Shih, I. M., Zhou, W., Goodman, S. N., Lengauer, C., Kinzler, K. W., and Vogelstein, B. (2001) Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res. 61, 818–822.

    PubMed  CAS  Google Scholar 

  11. Herrera, L., Kakati, S., Gibas, L., Pietrzak, E., and Sandberg, A. A. Gardner (1986) syndrome in a man with an interstitial deletion of 5q. Am. J. Med. Genet. 25, 473–476.

    Article  PubMed  CAS  Google Scholar 

  12. Groden, J., Thliveris, A., Samowitz, W., et al. (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600.

    Article  PubMed  CAS  Google Scholar 

  13. Nishisho, I., Nakamura, Y., Miyoshi, Y., et al. (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665–669.

    Article  PubMed  CAS  Google Scholar 

  14. Mori, T., Nagase, H., Horii, A., et al. (1994) Germ-line and somatic mutations of the APC gene in patients with Turcot syndrome and analysis of APC mutations in brain tumors. Genes Chromo. Cancer 9, 168–172.

    Article  CAS  Google Scholar 

  15. Spirio, L., Otterud, B., Stauffer, D., et al. (1992) Linkage of a variant or attenuated form of adenomatous polyposis coli to the adenomatous polyposis coli (APC) locus. Am. J. Hum. Genet. 51, 92–100.

    PubMed  CAS  Google Scholar 

  16. Soravia, C., Berk, T., Madlensky, L., et al. (1998) Genotype-phenotype correlations in attenuated adenomatous polyposis coli. Am. J. Hum. Genet. 62, 1290–1301.

    Article  PubMed  CAS  Google Scholar 

  17. Foulkes, W. D. (1995) A tale of four syndromes: familial adenomatous polyposis, Gardner syndrome, attenuated APC and Turcot syndrome. Q. J. Med. 88, 853–863.

    CAS  Google Scholar 

  18. Vogelstein, B., Fearon, E. R., Hamilton, S. R., et al. (1988) Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532.

    Article  PubMed  CAS  Google Scholar 

  19. Miyaki, M., Konishi, M., Kikuchi-Yanoshita, R., et al. (1994) Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res. 54, 3011–3020.

    PubMed  CAS  Google Scholar 

  20. Chung, D. (2000) The genetic basis of colorectal cancer:insights into critical pathways of tumorigenesis. Gastroenterology 119, 854–865.

    Article  PubMed  CAS  Google Scholar 

  21. Powell, S. M., Zilz, N., Beazer-Barclay, Y., et al. (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–237.

    Article  PubMed  CAS  Google Scholar 

  22. Miyoshi, Y., Nagase, H., Ando, H., et al. (1992) Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1, 229–233.

    Article  PubMed  CAS  Google Scholar 

  23. Jen, J., Powell, S. M., Papadopoulos, N., et al. (1994) Molecular determinants of dysplasia in colorectal lesions. Cancer Res. 54, 5523–5526.

    PubMed  CAS  Google Scholar 

  24. Smith, A. J., Stern, H. S., Penner, M., et al. (1994) Somatic APC and K-ras codon 12 mutations in aberrant crypt foci from human colons. Cancer Res. 54, 5527–5530.

    PubMed  CAS  Google Scholar 

  25. Su, L. K., Vogelstein, B., and Kinzler, K. W. (1993) Association of the APC tumor suppressor protein with catenins. Science 262, 1734–1737.

    Article  PubMed  CAS  Google Scholar 

  26. Rubinfeld, B., Souza, B., Albert, I., et al. (1993) Association of the APC gene product with beta-catenin. Science 262, 1731–1734.

    Article  PubMed  CAS  Google Scholar 

  27. Behrens, J., Jerchow, B. A., Wurtele, M., et al. (1998) Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280, 596–599.

    Article  PubMed  CAS  Google Scholar 

  28. Powell, S. M., Petersen, G. M., Krush, A. J., et al. (1993) Molecular diagnosis of familial adenomatous polyposis [see comments]. N. Engl. J. Med. 329, 1982–1987.

    Article  PubMed  CAS  Google Scholar 

  29. Spirio, L. N., Samowitz, W., Robertson, J., et al. (1998) Alleles of APC modulate the frequency and classes of mutations that lead to colon polyps. Nat. Genet. 20, 385–388.

    Article  PubMed  CAS  Google Scholar 

  30. He, T. C., Sparks, A. B., Rago, C., et al. (1998) Identification of c-MYC as a target of the APC pathway [see comments]. Science 281, 1509–1512.

    Article  PubMed  CAS  Google Scholar 

  31. Tetsu, O. and McCormick, F. (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426.

    Article  PubMed  CAS  Google Scholar 

  32. Crawford, H. C., Fingleton, B. M., Rudolph-Owen, L. A., et al. (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18, 2883–2891.

    Article  PubMed  CAS  Google Scholar 

  33. He, T. C., Chan, T. A., Vogelstein, B., and Kinzler, K. W. (1999) PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99, 335–345.

    Article  PubMed  CAS  Google Scholar 

  34. Mann, B., Gelos, M., Siedow, A., et al. (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc. Natl. Acad. Sci. U S A 96, 1603–1608.

    Article  PubMed  CAS  Google Scholar 

  35. Pennica, D., Swanson, et al. (1998) WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc. Natl. Acad. Sci. U S A 95, 14717–14722.

    Article  PubMed  CAS  Google Scholar 

  36. Sparks, A. B., Morin, P. J., Vogelstein, B., and Kinzler, K. W. (1998) Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58, 1130–1134.

    PubMed  CAS  Google Scholar 

  37. Kitaeva, M., Grogan, L., Williams, J., et al. (1997) Mutations in b-catenin are uncommon in colorectal cancer occurring in occasional replication error-positive tumors. Cancer Res. 57, 4478–4481.

    PubMed  CAS  Google Scholar 

  38. Harada, N., Tamai, Y., Ishikawa, T., et al. (1999) Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 18, 5931–5942.

    Article  PubMed  CAS  Google Scholar 

  39. Olschwang, S., Tiret, A., Laurent-Puig, P., Muleris, M., Parc, R., and Thomas, G. (1993) Restriction of ocular fundus lesions to a specific subgroup of APC mutations in adenomatous polyposis coli patients. Cell 75, 959–968.

    Article  PubMed  CAS  Google Scholar 

  40. Caspari, R., Olschwang, S., Friedl, W., et al. (1995) Familial adenomatous polyposis: desmoid tumours and lack of ophthalmic lesions (CHRPE) associated with APC mutations beyond codon 1444. Hum. Mol. Genet. 4, 337–340.

    Article  PubMed  CAS  Google Scholar 

  41. Spirio, L., Olschwang, S., Groden, J., et al. (1993) Alleles of the APC gene: an attenuated form of familial polyposis. Cell 75, 951–957.

    Article  PubMed  CAS  Google Scholar 

  42. Gardner, R. J., Kool, D., Edkins, E., et al. (1997) The clinical correlates of a 3′ truncating mutation (codons 1982–1983) in the adenomatous polyposis coli gene. Gastroenterology 113, 326–331.

    Article  PubMed  CAS  Google Scholar 

  43. Laken, S. J., Petersen, G. M., Gruber, S. B., et al. (1997) Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat. Genet. 17, 79–83.

    Article  PubMed  CAS  Google Scholar 

  44. Lothe, R. A., Hektoen, M., Johnsen, H., et al. (1998) The APC gene I1307K variant is rare in Norwegian patients with familial and sporadic colorectal or breast cancer. Cancer Res. 58, 2923–2924.

    PubMed  CAS  Google Scholar 

  45. Hulsken, J., Birchmeier, W., and Behrens, J. (1994) E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J. Cell Biol. 127, 2061–2069.

    Article  PubMed  CAS  Google Scholar 

  46. Aberle, H., Butz, S., Stappert, J., Weissig, H., Kemler, R., and Hoschuetzky, H. (1994) Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J. Cell Sci. 107, 3655–3663.

    PubMed  CAS  Google Scholar 

  47. Moon, R. T., Brown, J. D., Yang-Snyder, J. A., and Miller, J. R. (1997) Structurally related receptors and antagonists compete for secreted Wnt ligands. Cell 88, 725–728.

    Article  PubMed  CAS  Google Scholar 

  48. Rubinfeld, B., Albert, I., Porfiri, E., Munemitsu, S., and Polakis, P. (1997) Loss of betacatenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res. 57, 4624–4630.

    PubMed  CAS  Google Scholar 

  49. Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B., and Polakis, P. (1995) Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc. Natl. Acad. Sci. USA 92, 3046–3050.

    Article  PubMed  CAS  Google Scholar 

  50. Munemitsu, S., Albert, I., Rubinfeld, B., and Polakis, P. (1996) Deletion of an amino-terminal sequence beta-catenin in vivo and promotes hyperphosporylation of the adenomatous polyposis coli tumor suppressor protein. Mol. Cell Biol. 16, 4088–4094.

    PubMed  CAS  Google Scholar 

  51. Morin, P. J., Sparks, A. B., Korinek, V., et al. (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC [see comments]. Science 275, 1787–1790.

    Article  PubMed  CAS  Google Scholar 

  52. Rubinfeld, B., Robbins, P., El-Gamil, M., Albert, I., Porfiri, E., and Polakis, P. (1997) Stabilization of beta-catenin by genetic defects in melanoma cell lines [see comments]. Science 275, 1790–1792.

    Article  PubMed  CAS  Google Scholar 

  53. Shtutman, M., Zhurinsky, J., Simcha, I., et al. (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc. Natl. Acad. Sci. USA 96, 5522–5527.

    Article  PubMed  CAS  Google Scholar 

  54. Park, W. S., Oh, R. R., Park, J. Y., et al. (1999) Frequent somatic mutations of the betacatenin gene in intestinal-type gastric cancer. Cancer Res. 59, 4257–4260.

    PubMed  CAS  Google Scholar 

  55. Caca, K., Kolligs, F. T., Ji, X., et al. (1999) Beta-and gamma-catenin mutations, but not E-cadherin inactivation, underlie T-cell factor/lymphoid enhancer factor transcriptional deregulation in gastric and pancreatic cancer. Cell Growth Differ. 10, 369–376.

    PubMed  CAS  Google Scholar 

  56. Kawanishi, J., Kato, J., Sasaki, K., Fujii, S., Watanabe, N., and Niitsu, Y. (1995) Loss of E-cadherin-dependent cell-cell adhesion due to mutation of the beta-catenin gene in a human cancer cell line, HSC-39. Mol. Cell Biol. 15, 1175–1181.

    PubMed  CAS  Google Scholar 

  57. Luber, B., Candidus, S., Handschuh, G., et al. (2000) Tumor-derived mutated E-cadherin influences beta-catenin localization and increases susceptibility to actin cytoskeletal changes induced by pervanadate [In Process Citation]. Cell Adhes. Commun. 7, 391–408.

    Article  PubMed  CAS  Google Scholar 

  58. Samowitz, W. S., Powers, M. D., Spirio, L. N., Nollet, F., van Roy, F., and Slattery, M. L. (1999) Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Res. 59, 1442–1444.

    PubMed  CAS  Google Scholar 

  59. Duval, A., Gayet, J., Zhou, X. P., Iacopetta, B., Thomas, G., and Hamelin, R. (1999) Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res. 59, 4213–4215.

    PubMed  CAS  Google Scholar 

  60. Ishitani, T., Ninomiya-Tsuji, J., Nagai, S., et al. (1999) The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399, 798–802.

    Article  PubMed  CAS  Google Scholar 

  61. Seeling, J. M., Miller, J. R., Gil, R., Moon, R. T., White, R., and Virshup, D. M. (1999) Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science 283, 2089–2091.

    Article  PubMed  CAS  Google Scholar 

  62. Wang, S. S., Esplin, E. D., Li, J. L., et al. (1998) Alterations of the PPP2R1B gene in human lung and colon cancer. Science 282, 284–287.

    Article  PubMed  CAS  Google Scholar 

  63. Boland, C., Thibodeau, S., Hamilton, S., et al. (1998) National Cancer Institute workshop on microsatellite instability for cancer detection and familial predispostion:development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58, 5248–5257.

    PubMed  CAS  Google Scholar 

  64. Wu, Y., Berends, M. J., Post, J. G., et al. (2001) Germline mutations of exo1 gene in patients with hereditary nonpolyposis colorectal cancer (hnpcc) and atypical hnpcc forms. Gastroenterology 120, 1580–1587.

    Article  PubMed  CAS  Google Scholar 

  65. Marra, G. and Boland, C. (1995) Hereditary nonpolyposis colorectal cancer∶the syndrome, the genes, and historical perspective, J. Natl. Cancer Inst. 87, 1114–1125.

    Article  PubMed  CAS  Google Scholar 

  66. Wijnen, J. T., Vasen, H. F., Khan, P. M., et al. (1998) Clinical findings with implications for genetic testing in families with clustering of colorectal cancer. N. Engl. J. Med. 339, 511–518.

    Article  PubMed  CAS  Google Scholar 

  67. Liu, B., Parsons, R., Papadopoulos, N., et al. (1996) Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients [see comments]. Nat. Med. 2, 169–174.

    Article  PubMed  CAS  Google Scholar 

  68. Hemminki, A., Peltomaki, P., Mecklin, J. P., et al. (1994) Loss of the wild type MLH1 gene is a feature of hereditary nonpolyposis colorectal cancer. Nat. Genet. 8, 405–410.

    Article  PubMed  CAS  Google Scholar 

  69. Peltomaki, P. and Vasen, H. F. (1997) Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 113, 1146–1158.

    Article  PubMed  CAS  Google Scholar 

  70. Yan, H., Papadopoulos, N., Marra, G., et al. (2000) Conversion of diploidy to haploidy. Nature 403, 723–724.

    Article  PubMed  CAS  Google Scholar 

  71. Liu, B., Nicolaides, N., Markowitz, S., et al. (1995) Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nature Genet. 9, 48–53.

    Article  PubMed  CAS  Google Scholar 

  72. Kane, M., Loda, M., Gaida, G., et al. (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 57, 808–811.

    PubMed  CAS  Google Scholar 

  73. Veigl, M., Kasturi, L., Olechnowicz, J., et al. (1998) Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc. Natl. Acad. Sci. 95, 8698–8702.

    Article  PubMed  CAS  Google Scholar 

  74. Jiricny, J. (1998) Replication errors: cha(lle)nging the genome. EMBO J. 17, 6427–6436.

    Article  PubMed  CAS  Google Scholar 

  75. Kolodner, R. D. and Marsischky, G. T. (1999) Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9, 89–96.

    Article  PubMed  CAS  Google Scholar 

  76. Eshleman, J., Lang, E., Bowerfind, G., et al. (1995) Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer. Oncogene 10, 33–37.

    PubMed  CAS  Google Scholar 

  77. Yamamoto, H., Sawai, H., Weber, T., Rodriguez-Bigas, M., and Perucho, M. (1998) Somatic frameshift mutations in DNA mismatch repair and proapoptosis genes in hereditary nonpolyposis colorectal cancer. Cancer Res. 58, 997–1003.

    PubMed  CAS  Google Scholar 

  78. Markowitz, S., Wang, J., Myeroff, L., et al. (1995) Inactivation of the type II TGF-b receptor in colon cancer cells with microsatellite instability. Science 268, 1336–1338.

    Article  PubMed  CAS  Google Scholar 

  79. Schwartz, S., Yamamoto, H., Navarro, M., Maestro, M., Reventos, J., and Perucho, M. (1999) Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res. 59, 2995–3002.

    PubMed  CAS  Google Scholar 

  80. Ikeda, M., Orimo, H., Moriyama, H., et al. (1998) Close correlation between mutations of E2F4 and hMSH3 genes in colorectal cancers with microsatellite instability. Cancer Res. 58, 594–598.

    PubMed  CAS  Google Scholar 

  81. Piao, Z., Fang, W., Malkhosyan, S., et al. (2000) Frequent frameshift mutations of RIZ in sporadic gastrointestinal and endometrial carcinomas with microsatellite instability [In Process Citation]. Cancer Res. 60, 4701–4704.

    PubMed  CAS  Google Scholar 

  82. Wicking, C., Simms, L. A., Evans, T., et al. (1998) CDX2, a human homologue of Drosophila caudal, is mutated in both alleles in a replication error positive colorectal cancer. Oncogene 17, 657–659.

    Article  PubMed  CAS  Google Scholar 

  83. Huang, J., Papadopoulos, N., McKinley, A., et al. (1996) APC mutations in colorectal tumors with mismatch repair deficiency. Proc. Natl. Acad. Sci. USA 93, 9049–9054.

    Article  PubMed  CAS  Google Scholar 

  84. Konishi, M., Kikuchi-Yanoshita, R., Tanaka, K., et al. (1996) Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. Gastroenterology 111, 307–317.

    Article  PubMed  CAS  Google Scholar 

  85. Miyaki, M., Iijima, T., Kimura, J., et al. (1999) Frequent mutation of beta-catenin and APC genes in primary colorectal tumors from patients with hereditary nonpolyposis colorectal cancer. Cancer Res. 59, 4506–4509.

    PubMed  CAS  Google Scholar 

  86. Fujiwara, T., Stolker, J. M., Watanabe, T., et al. (1998) Accumulated clonal genetic alterations in familial and sporadic colorectal carcinomas with widespread instability in microsatellite sequences. Am. J. Pathol. 153, 1063–1078.

    Article  PubMed  CAS  Google Scholar 

  87. Eshleman, J., Casey, G., Kochera, M., et al. (1998) Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53. Oncogene 17, 719–725.

    Article  PubMed  CAS  Google Scholar 

  88. Olschwang, S., Hamelin, R., Laurent-Puig, P., et al. (1997) Alternative genetic pathways in colorectal carcinogenesis. Proc. Natl. Acad. Sci. USA 94, 12122–12127.

    Article  PubMed  CAS  Google Scholar 

  89. Lynch, H. T. and de la Chapelle, A. (1999) Genetic susceptibility to non-polyposis colorectal cancer. J. Med. Genet. 36, 801–818.

    PubMed  CAS  Google Scholar 

  90. Watson, P., Lin, K. M., Rodriguez-Bigas, M. A., et al. (1998) Colorectal carcinoma survival among hereditary nonpolyposis colorectal carcinoma family members [see comments]. Cancer 83, 259–266.

    Article  PubMed  CAS  Google Scholar 

  91. Aarnio, M., Mecklin, J. P., Aaltonen, L. A., Nystrom-Lahti, M., and Jarvinen, H. J. (1995) Life-time risk of different cancers in hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Int. J. Cancer 64, 430–433.

    Article  PubMed  CAS  Google Scholar 

  92. Miyaki, M., Konishi, M., Tanaka, K., et al. (1997) Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer [letter]. Nat. Genet. 17, 271–272.

    Article  PubMed  CAS  Google Scholar 

  93. Akiyama, Y., Sato, H., Yamada, T., et al. (1997) Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res. 57, 3920–3923.

    PubMed  CAS  Google Scholar 

  94. Herman, J., Umar, A., Polyak, K., et al. (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. USA 95, 6870–6875.

    Article  PubMed  CAS  Google Scholar 

  95. Baylin, S. B. and Herman, J. G. (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16, 168–174.

    Article  PubMed  CAS  Google Scholar 

  96. Jones, P. and Laird, P. (1999) Cancer epigenetics comes of age. Nature Genet. 21, 163–167.

    Article  PubMed  CAS  Google Scholar 

  97. Deng, G., Chen, A., Hong, J., Chae, H., and Kim, Y. (1999) Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res. 59, 2029–2033.

    PubMed  CAS  Google Scholar 

  98. Grady, W. M., Willis, J., Guilford, P. J., et al. (2000) Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer [In Process Citation] Nat. Genet. 26, 16–17.

    Article  PubMed  CAS  Google Scholar 

  99. Herman, J. G., Merlo, A., Mao, L., et al. (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 55, 4525–4530.

    PubMed  CAS  Google Scholar 

  100. Toyota, M., Ho, C., Ahuja, N., et al. (1999) Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res. 59, 2307–2312.

    PubMed  CAS  Google Scholar 

  101. Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J. G., Baylin, S. B., and Issa, J. P. (1999) CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA 96, 8681–8686.

    Article  PubMed  CAS  Google Scholar 

  102. Lu, S. L., Kawabata, M., Imamura, T., et al. (1998) HNPCC associated with germline mutation in the TGF-beta type II receptor gene [letter]. Nat. Genet. 19, 17–18.

    Article  PubMed  CAS  Google Scholar 

  103. Markowitz, S. and Roberts, A. (1996) Tumor supressor activity of the TGF-b pathway in human cancers. Cytokine Growth Factor Rev. 7, 93–102.

    Article  PubMed  CAS  Google Scholar 

  104. Fynan, T. M. and Reiss, M. (1993) Resistance to inhibition of cell growth by transforming growth factor-beta and its role in oncogenesis. Crit. Rev. Oncog. 4, 493–540.

    PubMed  CAS  Google Scholar 

  105. Massague, J. (1996) TGF-b signaling: receptors, transducers, and mad proteins. Cell 85, 947–950.

    Article  PubMed  CAS  Google Scholar 

  106. Wrana, J. and Pawson, T. (1997) Signal transduction. Mad about SMADs [news; comment]. Nature 388, 28–29.

    Article  PubMed  CAS  Google Scholar 

  107. Luo, K., Stroschein, S. L., Wang, W., et al. (1999) The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev. 13, 2196–2206.

    Article  PubMed  CAS  Google Scholar 

  108. Hua, X., Liu, X., Ansari, D. O., and Lodish, H. F. (1998) Synergistic cooperation of TFE3 and smad proteins in TGF-beta-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev. 12, 3084–3095.

    Article  PubMed  CAS  Google Scholar 

  109. Geng, Y. and Weinberg, R. A. (1993) Transforming growth factor beta effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proc. Natl. Acad. Sci. USA 90, 10315–10319.

    Article  PubMed  CAS  Google Scholar 

  110. Howe, P. H., Draetta, G., and Leof, E. B. (1991) Transforming growth factor beta 1 inhibition of p34cdc2 phosphorylation and histone H1 kinase activity is associated with G1/S-phase growth arrest. Mol. Cell Biol. 11, 1185–1194.

    PubMed  CAS  Google Scholar 

  111. Ewen, M. E., Sluss, H. K., Whitehouse, L. L., and Livingston, D. M. (1993) TGF beta inhibition of Cdk4 synthesis is linked to cell cycle arrest. Cell 74, 1009–1020.

    Article  PubMed  CAS  Google Scholar 

  112. Alexandrow, M. and Moses, H. (1995) Transforming growth factor b and cell cycle regulation. Cancer Res. 55, 1452–1457.

    PubMed  CAS  Google Scholar 

  113. Hannon, G. and Beach, D. (1994) p15INK4B is a potential effector of TGF-b-induced cell cycle arrest. Nature 371, 257–261.

    Article  PubMed  CAS  Google Scholar 

  114. Moses, H., Yang, E., and Pietonpol, J. (1990) TGF-b stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63, 245–247.

    Article  PubMed  CAS  Google Scholar 

  115. Keeton, M. R., Curriden, S. A., van Zonneveld, A. J., and Loskutoff, D. J. (1991) Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J. Biol. Chem. 266, 23048–23052.

    PubMed  CAS  Google Scholar 

  116. Zhao, Y. (1999) Transforming growth factor-beta (TGF-beta) type I and type II receptors are both required for TGF-beta-mediated extracellular matrix production in lung fibroblasts. Mol. Cell Endocrinol. 150, 91–97.

    Article  PubMed  CAS  Google Scholar 

  117. Kim, S. J., Im, Y. H., Markowitz, S. D., and Bang, Y. J. (2000) Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev. 11, 159–168.

    Article  PubMed  CAS  Google Scholar 

  118. Hoosein, N., McKnight, M., Levine, A., et al. (1989) Differential sensitivity of subclasses of human colon carcinoma cell lines to the growth inhibitory effects of transforming growth factor-b1. Exp. Cell Res. 181, 442–453.

    Article  PubMed  CAS  Google Scholar 

  119. Grady, W., Myeroff, L., Swinler, S., et al. (1999) Mutational inactivation of transforming growth factor b receptor type II in microsatellite stable colon cancers. Cancer Res. 59, 320–324.

    PubMed  CAS  Google Scholar 

  120. Parsons, R., Myeroff, L., Liu, B., et al. (1995) Microsatellite instability and mutations of the transforming growth factor b type II receptor gene in colorectal cancer. Cancer Res. 55, 5548–5550.

    PubMed  CAS  Google Scholar 

  121. Myeroff, L., Parsons, R., Kim, S.-J., et al. (1995) A transforming growth factor b receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res. 55, 5545–5547.

    PubMed  CAS  Google Scholar 

  122. Wang, J., Sun, L., Myeroff, L., et al. (1995) Demonstration that mutation of the type II transforming growth factor b receptor inactivates its tumor supressor activity in replication error-positive colon carcinoma cells. J. Biol. Chem. 270, 22044–22049.

    Article  PubMed  CAS  Google Scholar 

  123. Lu, S. L., Kawabata, M., Imamura, T., Miyazono, K., and Yuasa, Y. (1999) Two divergent signaling pathways for TGF-beta separated by a mutation of its type II receptor gene. Biochem. Biophys. Res. Commun. 259, 385–390.

    Article  PubMed  CAS  Google Scholar 

  124. Lynch, H. and Smyrk, T. (1996) Hereditary nonpolyposis colorectal cancer (Lynch syndrome): an updated review. Cancer 78, 1149–1167.

    Article  PubMed  CAS  Google Scholar 

  125. Watanabe, T., Wu, T. T., Catalano, P. J., et al. (2001) Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 344, 1196–1206.

    Article  PubMed  CAS  Google Scholar 

  126. Jarvinen, H. and Franssila, K. O. (1984) Familial juvenile polyposis coli; increased risk of colorectal cancer. Gut. 25, 792–800.

    Article  PubMed  CAS  Google Scholar 

  127. Fearon, E. R., Cho, K. R., Nigro, J. M., et al. (1990) Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247, 49–56.

    Article  PubMed  CAS  Google Scholar 

  128. Takagi, Y., Kohmura, H., Futamura, M., et al. (1996) Somatic alterations of the DPC4 gene in human colorectal cancers in vivo. Gastroenterology 111, 1369–1372.

    Article  PubMed  CAS  Google Scholar 

  129. Eppert, K., Scherer, S., Ozcelik, H., et al. (1996) MADR2 maps to 18q21 and encodes a TGFb-regulated MAD-related protein that is functionally mutated in colorectal cancer. Cell 86, 543–552.

    Article  PubMed  CAS  Google Scholar 

  130. Kretzschmar, M., Liu, F., Hata, A., Doody, J., and Massague, J. (1997) The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 11, 984–995.

    Article  PubMed  CAS  Google Scholar 

  131. Zhang, Y., Feng, X.-H., Wu, R.-Y., and Derynck, R. (1996) Receptor-associated Mad homologues synergize as effectors of the TGF-b response. Nature 383, 168–172.

    Article  PubMed  CAS  Google Scholar 

  132. Souchelnytskyi, S., Tamaki, K., Engstrom, U., Wernstedt, C., ten Dijke, P., and Heldin, C. H. (1997) Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J. Biol. Chem. 272, 28107–28115.

    Article  PubMed  CAS  Google Scholar 

  133. Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L., and Wrana, J. L. (1997) TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J. Biol. Chem. 272, 27678–27685.

    Article  PubMed  CAS  Google Scholar 

  134. Chen, Y. G., Hata, A., Lo, R. S., Wotton, D., Shi, Y., Pavletich, N., and Massague, J. (1998) Determinants of specificity in TGF-beta signal transduction. Genes Dev. 12, 2144–2152.

    Article  PubMed  CAS  Google Scholar 

  135. Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L., and Wrana, J. L. (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95, 779–791.

    Article  PubMed  CAS  Google Scholar 

  136. Hata, A., Lo, R. S., Wotton, D., Lagna, G., and Massague, J. (1997) Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4 [see comments]. Nature 388, 82–87.

    Article  PubMed  CAS  Google Scholar 

  137. Liu, F., Pouponnot, C., and Massague, J. (1997) Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev. 11, 3157–3167.

    Article  PubMed  CAS  Google Scholar 

  138. de Caestecker, M., Piek, E., and Roberts, A. The role of TGF-b signaling in cancer. J. Natl. Cancer Instit., in press.

    Google Scholar 

  139. de Caestecker, M. P., Hemmati, P., Larisch-Bloch, S., Ajmera, R., Roberts, A. B., and Lech-leider, R. J. (1997) Characterization of functional domains within Smad4/DPC4. J. Biol. Chem. 272, 13690–13696.

    Article  PubMed  Google Scholar 

  140. Hocevar, B. A., Brown, T. L., and Howe, P. H. (1999) TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 18, 1345–1356.

    Article  PubMed  CAS  Google Scholar 

  141. Dai, J. L., Schutte, M., Bansal, R. K., Wilentz, R. E., Sugar, A. Y., and Kern, S. E. (1999) Transforming growth factor-beta responsiveness in DPC4/SMAD4-null cancer cells. Mol. Carcinog. 26, 37–43.

    Article  PubMed  CAS  Google Scholar 

  142. Lagna, G., Hata, A., Hemmati-Brivanlou, A., and Massague, J. (1996) Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 383, 832–836.

    Article  PubMed  CAS  Google Scholar 

  143. Kim, S. J., Angel, P., Lafyatis, R., et al. (1990) Autoinduction of transforming growth factor beta 1 is mediated by the AP-1 complex. Mol. Cell Biol. 10, 1492–1497.

    PubMed  CAS  Google Scholar 

  144. Ashcroft, G. S., Yang, X., Glick, A. B., et al. (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response [see comments]. Nat. Cell Biol. 1, 260–266.

    Article  PubMed  CAS  Google Scholar 

  145. Nagarajan, R. P., Zhang, J., Li, W., and Chen, Y. (1999) Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J. Biol. Chem. 274, 33412–33418.

    Article  PubMed  CAS  Google Scholar 

  146. von Gersdorff, G., Susztak, K., Rezvani, F., Bitzer, M., Liang, D., and Bottinger, E. P. (2000) Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J. Biol. Chem. 275, 11320–11326.

    Article  Google Scholar 

  147. Wong, C., Rougier-Chapman, E. M., Frederick, J. P., et al. (1999) Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta. Mol. Cell Biol. 19, 1821–1830.

    PubMed  CAS  Google Scholar 

  148. Jonk, L. J., Itoh, S., Heldin, C. H., ten Dijke, P., and Kruijer, W. (1998) Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-beta, activin, and bone morphogenetic protein-inducible enhancer. J. Biol. Chem. 273, 21145–21152.

    Article  PubMed  CAS  Google Scholar 

  149. Grau, A. M., Zhang, L., Wang, W., et al. (1997) Induction of p21waf1 expression and growth inhibition by transforming growth factor beta involve the tumor suppressor gene DPC4 in human pancreatic adenocarcinoma cells. Cancer Res. 57, 3929–3934.

    PubMed  CAS  Google Scholar 

  150. Datto, M. B., Hu, P. P., Kowalik, T. F., Yingling, J., and Wang, X. F. (1997) The viral oncoprotein E1A blocks transforming growth factor beta-mediated induction of p21/WAF1/Cip1 and p15/INK4B. Mol. Cell Biol. 17, 2030–2037.

    PubMed  CAS  Google Scholar 

  151. Li, J. M., Nichols, M. A., Chandrasekharan, S., Xiong, Y., and Wang, X. F. (1995) Transforming growth factor beta activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J. Biol. Chem. 270, 26750–26753.

    Article  PubMed  CAS  Google Scholar 

  152. Hahn, S., Schutte, M., Shamsul Hoque, A., et al. (1996) DPC4, a candidate tumor supressor gene at human chromosome 18q21.1. Science 271, 350–353.

    Article  PubMed  CAS  Google Scholar 

  153. Riggins, G., Thiagalingam, S., Rozenblum, E., et al. (1996) Mad-related genes in the human. Nat. Genet. 13, 347–349.

    Article  PubMed  CAS  Google Scholar 

  154. Takaku, K., Oshima, M., Miyoshi, H., Matsui, M., Seldin, M., and Taketo, M. (1998) Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92, 645–656.

    Article  PubMed  CAS  Google Scholar 

  155. Takaku, K., Miyoshi, H., Matsunaga, A., Oshima, M., Sasaki, N., and Taketo, M. M. (1999) Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res. 59, 6113–6117.

    PubMed  CAS  Google Scholar 

  156. Xu, X., Brodie, S. G., Yang, X., et al. (2000) Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19, 1868–1874.

    Article  PubMed  CAS  Google Scholar 

  157. Friedl, W., Kruse, R., Uhlhaas, S., et al. (1999) Frequent 4-bp deletion in exon 9 of the SMAD4/MADH4 gene in familial juvenile polyposis patients. Genes Chromosomes Cancer 25, 403–406.

    Article  PubMed  CAS  Google Scholar 

  158. Roth, S., Sistonen, P., Salovaara, R., et al. (1999) A. SMAD genes in juvenile polyposis. Genes Chromosomes Cancer 26, 54–61.

    Article  PubMed  CAS  Google Scholar 

  159. Woodford-Richens, K., Williamson, J., Bevan, S., et al. (2000) Allelic loss at SMAD4 in polyps from juvenile polyposis patients and use of fluorescence in situ hybridization to demonstrate clonal origin of the epithelium. Cancer Res. 60, 2477–2482.

    PubMed  CAS  Google Scholar 

  160. Howe, J. R., Bair, J. L., Sayed, M. G., et al. (2001) Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat. Genet. 28, 184–187.

    Article  PubMed  CAS  Google Scholar 

  161. Kawabata, M., Imamura, T., and Miyazono, K. (1998) Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev. 9, 49–61.

    Article  PubMed  CAS  Google Scholar 

  162. Mishina, Y., Suzuki, A., Ueno, N., and Behringer, R. R. (1995) Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev. 9, 3027–3037.

    Article  PubMed  CAS  Google Scholar 

  163. Rowan, A., Bataille, V., MacKie, R., et al. (1999) Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malignant melanomas. J. Invest. Dermatol. 112, 509–511.

    Article  PubMed  CAS  Google Scholar 

  164. Su, G. H., Hruban, R. H., Bansal, R. K., et al. (1999) Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. Am. J. Pathol. 154, 1835–1840.

    Article  PubMed  CAS  Google Scholar 

  165. Wang, Z. J., Churchman, M., Campbell, I. G., et al. (1999) Allele loss and mutation screen at the Peutz-Jeghers (LKB1) locus (19p13.3) in sporadic ovarian tumours. Br. J. Cancer 80, 70–72.

    Article  PubMed  CAS  Google Scholar 

  166. Itzkowitz, S. and Kim, Y. (1998) Colonic polyps and polyposis syndromes, in: M. Feldman, B. Scharschmidt, and M. Sleisenger, eds., Sleisenger and Fordtran’s Gastrointestinal and Liver Disease, 6th ed., Saunders, Philadelphia, vol. 2, p. 1891.

    Google Scholar 

  167. Jenne, D. E., Reimann, H., Nezu, J., et al. (1998) Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat. Genet. 18, 38–43.

    Article  PubMed  CAS  Google Scholar 

  168. Hemminki, A., Markie, D., Tomlinson, I., et al. (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391, 184–187.

    Article  PubMed  CAS  Google Scholar 

  169. Ylikorkala, A., Avizienyte, E., Tomlinson, I. P., et al. (1999) Mutations and impaired function of LKB1 in familial and non-familial Peutz-Jeghers syndrome and a sporadic testicular cancer. Hum. Mol. Genet. 8, 45–51.

    Article  PubMed  CAS  Google Scholar 

  170. Yoon, K. A., Ku, J. L., Choi, H. S., et al. (2000) Germline mutations of the STK11 gene in Korean Peutz-Jeghers syndrome patients. Br. J. Cancer 82, 1403–1406.

    PubMed  CAS  Google Scholar 

  171. Westerman, A. M., Entius, M. M., Boor, P. P., et al. (1999) Novel mutations in the LKB1/STK11 gene in Dutch Peutz-Jeghers families. Hum. Mutat. 13, 476–481.

    Article  PubMed  CAS  Google Scholar 

  172. Smith, D. P., Spicer, J., Smith, A., Swift, S., and Ashworth, A. (1999) The mouse Peutz-Jeghers syndrome gene Lkb1 encodes a nuclear protein kinase. Hum. Mol. Genet. 8, 1479–1485.

    Article  PubMed  CAS  Google Scholar 

  173. Park, W. S., Moon, Y. W., Yang, Y. M., et al. (1998) Mutations of the STK11 gene in sporadic gastric carcinoma. Int. J. Oncol. 13, 601–604.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Grady, W.M., Markowitz, S.D. (2003). Hereditary Colon Cancer Genes. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 222. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-328-3:059

Download citation

  • DOI: https://doi.org/10.1385/1-59259-328-3:059

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-986-5

  • Online ISBN: 978-1-59259-328-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics