Skip to main content

Genotyping SNPs With Molecular Beacons

  • Protocol
Book cover Single Nucleotide Polymorphisms

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 212))

Abstract

Single-nucleotide substitutions represent the largest source of diversity in the human genome. Some of these variations have been directly linked to human disease, though the vast majority are neutral. Even neutral variations are important because they provide guideposts in the preparation of detailed maps of the human genome, serving as essential elements in linkage analyses that identify genes responsible for complex disorders (1). Although sequencing is adequate for the initial discovery of single-nucleotide variations, simpler, faster, and more automated genotyping methods are needed for routine clinical diagnostics and population studies. High-throughput methods are essential for understanding the distribution of genetic variations in populations, as well as for identifying the genes responsible for genetic disorders. Current alternatives to sequence analysis either miss some single-nucleotide substitutions or are too complex to enable high-throughput assays (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sachidanandam, R., Weissman, D., Schmidt, S. C., Kakol, J. M., Stein, L. D., Marth, G., et al. (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933.

    Article  PubMed  CAS  Google Scholar 

  2. Cotton, R. (ed.) (1997) Mutation Detection. Oxford University Press, Oxford, UK.

    Google Scholar 

  3. Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308.

    Article  PubMed  CAS  Google Scholar 

  4. Tyagi, S., Bratu, D. P., and Kramer, F. R. (1998) Multicolor molecular beacons for allele discrimination. Nat. Biotechnol. 16, 49–53.

    Article  PubMed  CAS  Google Scholar 

  5. Tyagi, S., Marras, S. A., and Kramer, F. R. (2000) Wavelength-shifting molecular beacons. Nat. Biotechnol. 18, 1191–1196.

    Article  PubMed  CAS  Google Scholar 

  6. Vet, J. A., Majithia, A. R., Marras, S. A., Tyagi, S., Dube, S., Poiesz, B. J., and Kramer, F. R. (1999) Multiplex detection of four pathogenic retroviruses using molecular beacons. Proc. Natl. Acad. Sci. USA 96, 6394–6399.

    Article  PubMed  CAS  Google Scholar 

  7. Marras, S. A., Kramer, F. R., and Tyagi, S. (1999) Multiplex detection of single-nucleotide variations using molecular beacons. Genet. Anal. 14, 151–156.

    Article  PubMed  CAS  Google Scholar 

  8. Leone, G., van Schijndel, H., van Gemen, B., Kramer, F. R., and Schoen, C. D. (1998) Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res. 26, 2150–2155.

    Article  PubMed  CAS  Google Scholar 

  9. de Baar, M. P., Timmermans, E. C., Bakker, M., de Rooij, E., van Gemen, B., and Goudsmit, J. (2001) One-tube real-time isothermal amplification assay to identify and distinguish human immunodeficiency virus type 1 subtypes A, B, and C and circulating recombinant forms AE and AG. J. Clin. Microbiol. 39, 1895–1902.

    Article  PubMed  Google Scholar 

  10. Steemers, F. J., Ferguson, J. A., and Walt, D. R. (2000) Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nat. Biotechnol. 18, 91–94.

    Article  PubMed  CAS  Google Scholar 

  11. Matsuo, T. (1998) In situ visualization of messenger RNA for basic fibroblast growth factor in living cells. Biochim. Biophys. Acta. 1379, 178–184.

    Article  PubMed  CAS  Google Scholar 

  12. Sokol, D. L., Zhang, X., Lu, P., and Gewirtz, A. M. (1998) Real time detection of DNA.RNA hybridization in living cells. Proc. Natl. Acad. Sci. USA 95, 11,538–11,543.

    Article  PubMed  CAS  Google Scholar 

  13. Bonnet, G., Tyagi, S., Libchaber, A., and Kramer, F. R. (1999) Ther-modynamic basis of the enhanced specificity of structured DNA probes. Proc. Natl. Acad. Sci. USA 96, 6171–6176.

    Article  PubMed  CAS  Google Scholar 

  14. Hu X., Belachew B., Chen L., Huang H., and Zhang J. (2000) Fluoresence-based single-tube assays to rapidly detect human gene mutations. Stratagies 13, 71–73.

    Google Scholar 

  15. Fung, C., Tyagi, S., Harris, L., Weisberg, S., Pinter, A., and Kramer, F. R. (2002) Genetic screening using molecular beacons. Clin. Chem. 47, in preparation.

    Google Scholar 

  16. Giesendorf, B. A., Vet, J. A., Tyagi, S., Mensink, E. J., Trijbels, F. J., and Blom, H. J. (1998) Molecular beacons: a new approach for semiautomated mutation analysis. Clin. Chem. 44, 482–486.

    PubMed  CAS  Google Scholar 

  17. Kostrikis, L. G., Huang, Y., Moore, J. P., Wolinsky, S. M., Zhang, L., Guo, Y., et al. (1998) A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promoter mutation. Nat. Med. 4, 350–353.

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalez, E., Bamshad, M., Sato, N., Mummidi, S., Dhanda, R., Catano, G., et al. (1999) Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes. Proc. Natl. Acad. Sci. USA 96, 12,004–12,009.

    Article  PubMed  CAS  Google Scholar 

  19. Durand, R., Eslahpazire, J., Jafari, S., Delabre, J. F., Marmorat-Khuong, A., di Piazza, J. P., and Le Bras, J. (2000) Use of molecular beacons to detect an antifolate resistance-associated mutation in Plas-modium falciparum. Antimicrob. Agents Chemother. 44, 3461–3464.

    Article  PubMed  CAS  Google Scholar 

  20. Piatek, A. S., Tyagi, S., Pol, A. C., Telenti, A., Miller, L. P., Kramer, F. R., and Alland, D. (1998) Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat. Biotechnol. 16, 359–363.

    Article  PubMed  CAS  Google Scholar 

  21. Vogelstein, B. and Kinzler, K. W. (1999) Digital PCR. Proc. Natl. Acad. Sci. USA 96, 9236–9241.

    Article  PubMed  CAS  Google Scholar 

  22. Täpp, I., Malmberg, L., Rennel, E., Wik, M., and Syvänen, A. C. (2000) Homogeneous scoring of single-nucleotide polymorphisms: comparison of the ′’-nuclease TaqMan assay and molecular beacon probes. Biotechniques 28, 732–738.

    PubMed  Google Scholar 

  23. Szuhai, K., Ouweland, J., Dirks, R., Lemaitre, M., Truffert, J., Janssen, G., et al. (2001) Simultaneous A8344G heteroplasmy and mitochondrial DNA copy number quantification in myoclonus epilepsy and ragged-red fibers (MERRF) syndrome by a multiplex molecular beacon based real-time fluorescence PCR. Nucleic Acids Res. 29, E13.

    Article  PubMed  CAS  Google Scholar 

  24. Mullah, B. and Livak, K. (1999) Efficient automated synthesis of molecular beacons. Nucleosides Nucleotides 18, 1311–1312.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Marras, S.A.E., Russell Kramer, F., Tyagi, S. (2003). Genotyping SNPs With Molecular Beacons. In: Kwok, PY. (eds) Single Nucleotide Polymorphisms. Methods in Molecular Biology™, vol 212. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-327-5:111

Download citation

  • DOI: https://doi.org/10.1385/1-59259-327-5:111

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-968-1

  • Online ISBN: 978-1-59259-327-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics