Skip to main content

Tumor Vaccination with Cytokine-Encapsulated Microspheres

  • Protocol
Lung Cancer

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 75))

Abstract

The rapid advances that have taken place in tumor immunology within the past decade have fostered renewed interest in the use of immune-based therapies for the treatment of cancer (1,2). Numerous strategies, which aim to provoke and augment anti-tumor immunity in cancer patients, have been developed and are being tested in clinical trials (24). One strategy that has worked well in preclinical mouse models involves the use of immune stimulatory molecules, i.e., cytokines, to augment the anti-tumor activity of the immune system (57). The early studies focused on the systemic administration of selected cytokines to promote a nonspecific augmentation of an already existing anti-tumor immunity (5,7). While successful in murine models, particularly with interleukin (IL)-2 and -12, the systemic delivery of cytokines has not been efficacious in the clinics due to severe systemic toxicity. Systemic administration of immunotherapeutic agents ignores the paracrine nature of their activity. With the advent of molecular techniques that allowed efficient genetic modification of tumor cells in vitro, cytokine gene-modified tumor cell vaccines became the preferred alternative to systemic therapy. This approach results in the local and sustained release of cytokines by the tumor cells at the vaccine site, which induces the development of a tumor-specific, systemic anti-tumor immunity while circumventing the toxicity associated with systemic delivery (47).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sogn, J. A. (1998) Tumor Immunology: The Glass is Half Full. Immunity 9, 757–763.

    CAS  Google Scholar 

  2. Davis, I. D. (2000) An overview of cancer immunotherapy. Immunol. Cell Biol. 78, 179–195.

    Article  PubMed  CAS  Google Scholar 

  3. Minev, B. R., Chavez, F. L., and Mitchell, M. S. (1999) Cancer Vaccines: Novel approaches and new promise. Pharmacol. Ther. 81(2), 121–139.

    Article  PubMed  CAS  Google Scholar 

  4. Dranoff, G. (1998) Cancer gene therapy: connecting basic research with clinical inquiry. J. Clin. Oncol. 16, 2548–2556.

    PubMed  CAS  Google Scholar 

  5. Colombo, M. P. and Forni, G. (1997) Immunotherapy I: cytokine gene transfer strategies. Cancer Met. Rev. 16, 421–432.

    Article  CAS  Google Scholar 

  6. Gilboa, E. (1996) Immunotherapy of cancer with genetically modified tumor vaccines. Semin. Oncol. 23(1), 101–107.

    PubMed  CAS  Google Scholar 

  7. Tuting, T., Storkus, W. J., and Lotze, M. T. (1997) Gene-based strategies for the immunotherapy of cancer. J. Mol. Med. 75, 478–491.

    Article  PubMed  CAS  Google Scholar 

  8. Cavallo, F., Signorelli, P., Giovarelli, M., Musiani, P., Modesti, A., Brunda, M. J., et al. (1997) Anti-tumor efficacy of adenocarcinoma cells engineered to produce interleukin 12 (IL-12) or other cytokines compared with exogenous IL-12. J. Natl. Cancer Inst. 89(14), 1049–1058.

    Article  PubMed  CAS  Google Scholar 

  9. Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., Brose, K., et al. (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony stimulating factor stimulates potent, specific and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543.

    Article  PubMed  CAS  Google Scholar 

  10. Cavallo, F., Di PIerro, F., Giovarelli, M., Gulino, A., Vacca, A., Stoppacciaro, A., et al. (1993) Protective and curative potential of vaccination with interleukin-2-gene-transfected cells from a spontaneous mouse mammary adenocarcinoma. Cancer Res. 53, 5067–5070.

    PubMed  CAS  Google Scholar 

  11. Allione, A., Consalvo, M., Nanni, P., Lollini, P. L., Cavallo, F., Giovarelli, M., et al. (1994) Immunizing and curative potential of replicating and nonreplicating murine mammary adenocarcinoma cells engineered with interleukin (IL)-2, IL-4, IL-6, IL-7, IL-10. Tumor necrosis factor-α, granulocyte-macrophage colony stimulating factor and γ-interferon gene or admixed with conventional adjuvants. Cancer Res. 54, 6022–6026.

    PubMed  CAS  Google Scholar 

  12. Gansbacher, B., Zier, K., Daniels, B. Cronin, K., Bannerji, R., and Gilboa, E. (1990) Interleukin-2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J. Exp. Med. 172, 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  13. Gansbacher, B., Bannerji, R., Daniels, B. Zier, K., Cronin, K., and Gilboa, E. (1990) Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long-lasting anti-tumor immunity. Cancer Res. 50, 7820–7825.

    PubMed  CAS  Google Scholar 

  14. Golumbek, P. T., Lazenby, A. J., Levitsky, H. I., Jaffee, L. M., Karasuyama, H., Baker, M., and Pardoll, D. M. (1991) Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 254, 713–716.

    Article  PubMed  CAS  Google Scholar 

  15. Zitvogel, L., Tahara, H., Robbins, P. D., Storkus, W. J., Clarke, M. R., Nalesnik, M. A., and Lotze, M. T. (1995) Cancer immunotherapy of established tumors with IL-12. Effective delivery by genetically engineered fibroblasts. J. Immunol. 155, 1393–1403.

    PubMed  CAS  Google Scholar 

  16. Tahara, H., Zitvogel, L., Storkus, W. J., Zeh, H. J. 3rd, McKinney, T. G., Schreiber, R. D., et al. (1995) Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector. J. Immunol. 154, 6466–6474.

    PubMed  CAS  Google Scholar 

  17. Lotze, M. T. and Rubin, J. T. (1994) Gene therapy of cancer: a Pilot study of IL-4-gene-modified fibroblasts admixed with autologous tumor to elicit an immune response. Human Gene Ther. 5, 41–55.

    Article  CAS  Google Scholar 

  18. Bramson, J. L., Hitt, M., Addison, C. L., Muller, W. J., Gauldie, J., and Graham, F. L. (1996) Direct intratumoral injection of an adeno-virus expressing interleukin-12 induces regression and long-lasting immunity that is associated with highly localized expression of interleukin-12. Hum. Gene Ther. 7, 1995–2002.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang, J. F., Hu, C., Geng, Y., Selm, J., Klein, S. B., Orazi, A., and Taylor, M. W. (1996) Treatment of a human breast cancer xenograft with an adenovirus vector containing an interferon gene therapy. Proc. Natl. Acad. Sci. USA 93, 4513–4518.

    Article  PubMed  CAS  Google Scholar 

  20. Toloza, E. M., Hunt, K., Swisher, S., McBride, W., Lau, R., Pang, S., et al. (1996) In vivo cancer gene therapy with a recombinant interleukin-2 adenovirus vector. Cancer Gene Ther. 3, 11–17.

    PubMed  CAS  Google Scholar 

  21. Hartikka, J., Sawdey, M., Cornefert-Jensen, F., Margalith, M., Barnhart, K., Nolasco, M., et al. (1996) An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum. Gene Ther. 7, 1205–1217.

    Article  PubMed  CAS  Google Scholar 

  22. Arienti, F., Sulé-Suso, J., Belli, F., Mascheroni, L., Rivoltini, L., Melani, C., et al. (1996) Limited anti-tumor T cell response in melanoma patients vaccinated with interleukin-2 gene-transduced allogeneic melanoma cells. Human Gene Ther. 7, 1955–1963.

    Article  CAS  Google Scholar 

  23. Pardoll, D. M. (1995) Paracrine cytokine adjuvants in cancer immunotherapy. Annu. Rev. Immunol. 13, 399–415.

    Article  PubMed  CAS  Google Scholar 

  24. Cavallo, F., Giovarelli, M., Gulino, A., Vacca, A., Stoppacciaro, A., Modesti, A., and Forni, G. (1992) Role of neutrophils and CD4+ T lymphocytes in the primary and memory response to non-immunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene transfection. J. Immunol. 149, 3627–3635.

    PubMed  CAS  Google Scholar 

  25. Brunda, M. J., Luistro, L., Warrier, R. R., Wright, R. B., Hubbard, B. R., Murphy, M., et al. (1993) Anti-tumor and antimetastatic activity of interleukin 12 against murine tumors. J. Exp. Med. 178, 1223–1230.

    Article  PubMed  CAS  Google Scholar 

  26. Nastala, C. L., Edington, H. D., McKinney, T. G., Tahara, H., Nalesnik, M. A., Brunda, M. J., et al. Recombinant IL-12 administration induces tumor regression in association with IFN-g production.

    Google Scholar 

  27. Morikawa, K., Okada, F., Hosokawa, M., and Koybayashi, H. (1987) Enhancement of therapeutic effects of recombinant interleukin-2 on a transplantable rat fibrosarcomaby the use of a sustained release vehicle, pluronic gel. Cancer Res. 54, 182–189.

    Google Scholar 

  28. Golumbek, P. T., Azhari, R., Jaffee, E. M., Levitsky, H. I., Lazenby, A., Leong, K., and Pardoll, D. M. (1993) Controlled release, biodegradable cytokine depots: a new approach in cancer vaccine design. Cancer Res. 53, 5841–5844.

    PubMed  CAS  Google Scholar 

  29. Langer, R. (1998) Drug delivery and targeting. Nature 392 (Suppl.), 5–10.

    PubMed  CAS  Google Scholar 

  30. Menei, P., Venier, M.-C., Gamelin, E., Saint-André, J.-P., Hayek, G., Jadaud, E., et al. (1999) Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of glioblastoma. Cancer 86, 325–330.

    Article  PubMed  CAS  Google Scholar 

  31. O’Hagan, D. T., Singh, M., and Gupta, R. K. (1998) Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv. Drug Del. Rev. 32, 225–246.

    Article  Google Scholar 

  32. Liu, L.-S., Liu, S.-Q., Ng, S. Y., Froix, M., Ohno, T., and Heller, J. (1997) Controlled release of interleukin-2 for tumour immunotherapy using alginate/chitosan porous microspheres. (1997) J. Controlled Rel. 43, 65–74.

    Article  CAS  Google Scholar 

  33. Chen, L., Apre, R. N., and Cohen, S. (1997) Characterization of PLGA microspheres for the controlled delivery of IL-1a for tumor immunotherapy. J. Controlled Rel. 43, 261–272.

    Article  Google Scholar 

  34. Putney, S. D. and Burke, P. A. (1998) Improving protein therapeutics with sustained-release formulations. Nature Biotechnol. 16, 153–157.

    Article  CAS  Google Scholar 

  35. Mathiowitz, E., Jacob, J. S., Jong, Y. S., Carino, G. P., Chickering, D. E., Chaturvedl, P., et al. (1997) Biologically erodable microspheres as potential oral drug delivery systems. Lett. Nature 386, 410–414.

    Article  CAS  Google Scholar 

  36. Hora, M. S., Rana, R. K., Nunberg, J. H., Tice, T. R., Gilley, R. M., and Hudson, M. E. (1990) Controlled release of interleukin-2 from biodegradable microspheres. Biotechnology 8, 755–758.

    Article  PubMed  CAS  Google Scholar 

  37. Egilmez, N. K., Jong, Y. S., Iwanuma, Y., Jacob, J. S., Santos, C. A., Chen, F.-A., et al. (1998) Cytokine immunotherapy of cancer with controlled release biodegradable microspheres in a human tumor xenograft/SCID mouse model. Cancer Immunol. Immunother. 46, 21–24.

    Article  PubMed  CAS  Google Scholar 

  38. Jong, Y. S., Egilmez, N. K., Jacob, J. S., Smith, L. P., Mottl, T. S., Chen, F.-A., et al. (1999) Evaluation of cytokine delivery systems for cancer immunotherapy. Proc. Mater. Res. Soc. Implants Tissue Engin. 550, 71–75.

    Article  CAS  Google Scholar 

  39. Kuriakose, M. A., Chen, F.-A., Egilmez, N. K., Jong, Y. S., Mathiowitz, E., DeLacure, M. D., et al. (2000) Interleukin-12 delivered by biodegradable microspheres promotes the anti-tumor activity of human peripheral blood lymphocytes in a human head and neck tumor xenograft/SCID mouse model. Head Neck Surg. 22, 57–63.

    Article  CAS  Google Scholar 

  40. Egilmez, N. K., Jong, Y. S., Hess, S. D., Jacob, J. S., Mathiowitz, E., and Bankert, R. B. (2000) Cytokines delivered by biodegradable microspheres promote effective suppression of human tumors by human peripheral blood lymphocytes in the SCID/Winn model. J. Immunother. 23, 190–195.

    Article  PubMed  CAS  Google Scholar 

  41. Egilmez, N. K., Jong, Y. S., Sabel, M. S., Jacob, J. S., Mathiowitz, E., and Bankert, R. B. (2000) In situ tumor vaccination with Interleukin-12 encapsulated biodegradable microspheres: induction of tumor regression and potent anti-tumor immunity. Cancer Res. 60, 3832–3837.

    PubMed  CAS  Google Scholar 

  42. Sabel, M. S., Hill, H., Jong, Y. S., Mathiowitz, E., Bankert, R. B., and Egilmez, N. K. (2001) Neoadjuvant therapy with IL-12-loaded PLA microspheres reduces local recurrence and distant metastases. Surgery 130(3), 470–478.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Egilmez, N.K., Jong, Y.S., Mathiowitz, E., Bankert, R.B. (2003). Tumor Vaccination with Cytokine-Encapsulated Microspheres. In: Driscoll, B. (eds) Lung Cancer. Methods in Molecular Medicine™, vol 75. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-324-0:687

Download citation

  • DOI: https://doi.org/10.1385/1-59259-324-0:687

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-920-9

  • Online ISBN: 978-1-59259-324-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics